

What readers are saying about Programming Groovy

More than a tutorial on the Groovy language, Programming Groovy is

an excellent resource for learning the advanced concepts of metaob-

ject programming, unit testing with mocks, and DSLs. This is a must-

have reference for any developer interested in learning to program

dynamically.

Joe McTee

Developer, JEKLsoft

Venkat does a fantastic job of presenting many of the advanced fea-

tures of Groovy that make it so powerful. He is able to present those

ideas in a way that developers will find very easy to internalize. This

book will help Groovy developers take their kung fu to the next level.

Great work, Venkat!

Jeff Brown

Member, the Groovy and Grails development teams

At this point in my career, I am really tired of reading books that

introduce languages. This volume was a pleasant breath of fresh air,

however. Not only has Venkat successfully translated his engaging

speaking style into a book, he has struck a good balance between

introductory material and those aspects of Groovy that are new and

exciting. Java developers will quickly grasp the relevant concepts

without feeling like they are being insulted. Readers new to the plat-

form will also be comfortable with the arc he presents.

Brian Sletten

Zepheira, LLC

You simply won’t find a more comprehensive resource for getting up to

speed on Groovy metaprogramming.

Jason Rudolph

Author, Getting Started with Grails

This book is an important step forward in mastering the language.

Venkat takes the reader beyond simple keystrokes and syntax into

the deep depths of “why?” Groovy brings a subtle sophistication to

the Java platform that you didn’t know was missing. Once you see

those missing language features in action, you can’t imagine how you

ever programmed without them. As I read the book, I asked my own

“why?” question over and over: “Why wasn’t this book around when I

was learning Groovy?” After you’ve read this book, it’s difficult to look

at programming on the Java platform the same way.

Scott Davis

Editor-in-Chief, aboutGroovy.com; author of Groovy Recipes

Venkat neatly dissects the Groovy language—a language that is far

more than just “Java++”—in nice, edible chunks for the Groovy pro-

grammer to consume. If you’re a Java programmer and you’re try-

ing to figure out why everybody is getting all excited about dynamic

languages on top of the Java Virtual Machine, look no further than

Venkat’s book.

Ted Neward

Java/.NET/XML services, http://www.tedneward.com

Despite signs to the contrary, Java isn’t dead—it’s just evolving.

Today’s developer needs a dynamic language like Groovy in their

toolkit, and Venkat does a tremendous job presenting this exciting

new addition to the JVM. With all of his examples, you’ll be up and

running in no time!

Nathaniel T. Schutta

Author/Speaker/Teacher

I am always on the lookout for good books on the metaprogramming

features of languages, and Groovy finally has one. Part 3 of Venkat’s

book is devoted entirely to Groovy’s metaprogramming features.

Sweet. I won’t tell you which language to use, but if you are consid-

ering Groovy, read Part 3 of this book.

Stuart Halloway

CEO, Relevance, Inc.

www.thinkrelevance.com

http://www.tedneward.com
www.thinkrelevance.com

This is a very well-written guide to Groovy. It’s an easy read, com-

pletely devoid of fluff, that will get you on the path to Groovy goodness

right out of the gate.

David Geary

Author, Clarity Training, Inc.

Venkat could make rocket science sound easy. He definitely makes

Groovy for Java developers sound easy.

Erik Weibust

Senior Architect, Credera

Programming Groovy
Dynamic Productivity for the Java Developer

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Venkat Subramaniam.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-09-3

ISBN-13: 978-1-934356-09-8

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

http://www.pragprog.com

�
� � � ������������	
����	
��
����

����������������
� � ���
�����–����

“As moves the world, to move in tune with

changing times and ways is wisdom”

— Thiruvalluvar, Poet and Philosopher, 31 B.C.

(Verse 426 from Thirukural, a collection of 1330 noble couplets)

Contents
Foreword 14

1 Introduction 16

1.1 Why Dynamic Languages? 16

1.2 What’s Groovy? . 19

1.3 Why Groovy? . 20

1.4 What’s in This Book? . 23

1.5 Who Is This Book For? 26

1.6 Acknowledgments . 26

I Beginning Groovy 29

2 Getting Started 30

2.1 Getting Groovy . 30

2.2 Installing Groovy . 31

2.3 Test-Drive Using groovysh 32

2.4 Using groovyConsole . 33

2.5 Running Groovy on the Command Line 34

2.6 Using an IDE . 35

3 Groovy for the Java Eyes 37

3.1 From Java to Groovy . 37

3.2 JavaBeans . 45

3.3 Optional Parameters . 50

3.4 Implementing Interfaces 51

3.5 Groovy boolean Evaluation 55

3.6 Operator Overloading . 56

3.7 Support of Java 5 Language Features 59

3.8 Gotchas . 67

CONTENTS 10

4 Dynamic Typing 75

4.1 Typing in Java . 75

4.2 Dynamic Typing . 78

4.3 Dynamic Typing != Weak Typing 79

4.4 Design by Capability . 80

4.5 Optional Typing . 86

4.6 Types in Groovy . 86

4.7 Multimethods . 87

4.8 Dynamic: To Be or Not to Be? 91

5 Using Closures 92

5.1 Closures . 92

5.2 Use of Closures . 96

5.3 Working with Closures 98

5.4 Closure and Resource Cleanup 98

5.5 Closures and Coroutines 101

5.6 Curried Closure . 102

5.7 Dynamic Closures . 105

5.8 Closure Delegation . 107

5.9 Using Closures . 110

6 Working with Strings 111

6.1 Literals and Expressions 111

6.2 GString Lazy Evaluation Problem 114

6.3 Multiline String . 118

6.4 String Convenience Methods 120

6.5 Regular Expressions . 121

7 Working with Collections 124

7.1 Using List . 124

7.2 Iterating Over an ArrayList 126

7.3 Finder Methods . 129

7.4 Collections’ Convenience Methods 130

7.5 Using Map . 133

7.6 Iterating Over Map . 135

7.7 Map Convenience Methods 137

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=10

CONTENTS 11

II Using Groovy 140

8 Exploring the GDK 141

8.1 Object Extensions . 141

8.2 Other Extensions . 147

9 Working with XML 155

9.1 Parsing XML . 155

9.2 Creating XML . 160

10 Working with Databases 164

10.1 Connecting to a Database 165

10.2 Database Select . 166

10.3 Transforming Data to XML 167

10.4 Using DataSet . 168

10.5 Inserting and Updating 169

10.6 Accessing Microsoft Excel 169

11 Working with Scripts and Classes 172

11.1 The Melting Pot of Java and Groovy 172

11.2 Running Groovy . 173

11.3 Using Groovy Classes from Groovy 174

11.4 Using Groovy Classes from Java 175

11.5 Using Java Classes from Groovy 176

11.6 Using Groovy Scripts from Groovy 178

11.7 Using Groovy Scripts from Java 180

11.8 Ease of Integration . 182

III MOPping Groovy 183

12 Exploring Meta-Object Protocol (MOP) 184

12.1 Groovy Object . 185

12.2 Querying Methods and Properties 190

12.3 Dynamically Accessing Objects 192

13 Intercepting Methods Using MOP 194

13.1 Intercepting Methods Using GroovyInterceptable 194

13.2 Intercepting Methods Using MetaClass 197

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=11

CONTENTS 12

14 MOP Method Injection and Synthesis 202

14.1 Injecting Methods Using Categories 203

14.2 Injecting Methods Using ExpandoMetaClass 208

14.3 Injecting Methods into Specific Instances 212

14.4 Method Synthesis Using methodMissing 214

14.5 Method Synthesis Using ExpandoMetaClass 219

14.6 Synthesizing Methods for Specific Instances 222

15 MOPping Up 224

15.1 Creating Dynamic Classes with Expando 224

15.2 Method Delegation: Putting It All Together 227

15.3 Review of MOP Techniques 231

16 Unit Testing and Mocking 234

16.1 Code in This Book and Automated Unit Tests 234

16.2 Unit Testing Java and Groovy Code 236

16.3 Testing for Exceptions 240

16.4 Mocking . 241

16.5 Mocking by Overriding 244

16.6 Mocking Using Categories 248

16.7 Mocking Using ExpandoMetaClass 249

16.8 Mocking Using Expando 251

16.9 Mocking Using Map . 253

16.10 Mocking Using the Groovy Mock Library 254

17 Groovy Builders 260

17.1 Building XML . 260

17.2 Building Swing . 264

17.3 Custom Builder Using Metaprogramming 265

17.4 Using BuilderSupport . 268

17.5 Using FactoryBuilderSupport 272

18 Creating DSLs in Groovy 277

18.1 Context . 277

18.2 Fluency . 279

18.3 Types of DSLs . 280

18.4 Designing Internal DSLs 281

18.5 Groovy and DSLs . 281

18.6 Closures and DSLs . 282

18.7 Method Interception and DSLs 283

18.8 The Parentheses Limitation and a Workaround 285

18.9 Categories and DSLs . 286

18.10 ExpandoMetaClass and DSLs 289

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=12

CONTENTS 13

A Web Resources 291

B Bibliography 296

Index 298

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=13

Foreword
Back in 2003, when we started Groovy, our goal was to provide Java

developers with an additional language to complement Java, a new

Swiss Army knife to add to their tool belt. Java is a great language and

a wonderful platform, but sometimes you need the agility and expres-

siveness of scripting languages or, even better, dynamic languages. We

didn’t want a new language that would be a paradigm shift for Java

developers. Instead, Groovy was made to seamlessly integrate with Java

in all possible ways while at the same time adding all the goodies

you would expect from a dynamic language. The best of both worlds!

You don’t even have to wait for Java 7, 8, or 9 to get all the nuggets

you’d want to have in your next programming language of choice: clo-

sures, properties, native syntax for lists, maps, and regular expres-

sions. Everything is already there.

Over the course of time, Groovy has matured a lot and has become a

very successful open source dynamic language used by tons of Java

developers and by big companies that embed it in their applications

servers or their mission-critical applications. Groovy lets you write more

expressive unit tests and simplifies XML parsing or SQL data imports,

and for your mundane tasks, there’s a scripting solution perfectly inte-

grated with your Java ecosystem. When you need to extend your appli-

cation to customize it to your needs, you can also integrate Groovy

at specific points by injecting Groovy scripts. Thanks to Groovy’s mal-

leable syntax, you can even create domain-specific languages fairly eas-

ily to represent business rules that even end users can author.

Now, step back a little. At first sight, despite the marketing taint of

the previous paragraphs, it sounds great, and you probably see a few

places where you’d definitely need to use such a versatile tool. But it’s

just something else you have to learn to be able to leverage it to its

fullest extent, right? You’re a Java developer, so do you fear it’s going

to be difficult to get the best out of it without wasting too much of your

time and energy?

FOREWORD 15

Fortunately, this book is right for you. Venkat will guide you through

Groovy and its marvels. Without being a boring encyclopedia, this book

covers a lot of ground. And in a matter of hours (well, in fact, just the

time to read the book), you’ll be up to speed, and you’ll see how Groovy

was made by Java developers for Java developers. You won’t regret your

journey, and you’ll be able to keep this book on your desk for reference

or for finding new creative ways to solve the problem of the day.

Guillaume Laforge (Groovy project manager)

February 5, 2008

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=15

Chapter 1

Introduction
As a busy Java developer, you’re constantly looking for ways to be more

productive, right? You’re probably willing to take all the help you can

get from the platform and tools available to you. When I wax poetic

about the “strength of Java,” I’m not talking about the language or its

syntax. It’s the Java platform that has become more capable and more

performant. To reap the benefit of the platform and to tackle the inher-

ent complexities of your applications, you need another tool—one with a

dynamic and metaprogramming capabilities. Java—the language—has

been flirting with that idea for a while and will support these features

to various degrees in future versions. However, you don’t have to wait

for that day. You can build performant Java applications with all the

dynamic capabilities today, right now, using Groovy.

1.1 Why Dynamic Languages?

Dynamic languages have the ability to extend a program at runtime,

including changing the structure of objects, types, and behavior. Dy-

namic languages allow you to do things at runtime that static languages

do at compile time; they allow you to execute program statements that

were created on the fly at runtime.

For example, if you want to get the date five days from now, you can

write this:

5.days.from.now

Yes, that’s your friendly java.lang.Integer chirping dynamic behavior in

Groovy, as you’ll learn later in this book.

WHY DYNAMIC LANGUAGES? 17

The flexibility offered by dynamic languages gives you the advantage

of evolving your application as it executes. You are probably familiar

with code generation and code generation tools. I consider code gener-

ation to be soooo 20th century. In fact, generated code is like an inces-

sant itch on your back; if you keep scratching it, it turns into a sore.

With dynamic languages, there are better ways. I prefer code synthe-

sis, which is in-memory code creation at runtime. Dynamic languages

make it easy to “synthesize code.” The code is synthesized based on the

flow of logic through your application and becomes active “just in time.”

By carefully applying these capabilities of dynamic languages, you can

be more productive as an application developer. This higher productiv-

ity means you can easily create higher levels of abstractions in shorter

amounts of time. You can also use a smaller, yet more capable, set

of developers to create applications. In addition, greater productivity

means you can create parts of your application quickly and get feed-

back from your fellow developers, testers, domain experts, and cus-

tomer representatives. And all this leads to greater agility.1

Dynamic languages have been around for a long time, so you may be

asking, why is now a great time to get excited about them? I can answer

that with four reasons:2

• Machine speed

• Availability

• Awareness of unit testing

• Killer applications

Let’s discuss each of these reasons for getting excited about dynamic

languages, starting with machine speed. Doing at runtime what other

languages do at compile time first raises the concern of the speed of

dynamic languages. Furthermore, interpreting code at runtime rather

than simply executing compiled code adds to that concern. Fortunately,

machine speed has consistently increased over the years—handhelds

have more computing and memory power today than what large com-

puters had decades ago. Tasks that were quite unimaginable using a

1. Tim O’Reilly observes the following about developing web applications: “Rather than

being finished paintings, they are sketches, continually being redrawn in response to

new data.” He also makes the point that dynamic languages are better suited for these in

“Why Scripting Languages Matter” (see Appendix A, on page 291).
2. A fifth reason is the ability to run dynamic languages on the JVM, but that came

much later.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=17

WHY DYNAMIC LANGUAGES? 18

1980s processor are easy to achieve today. The performance concerns

of dynamic languages are greatly eased because of processor speeds

and other improvements in our field, including better just-in-time com-

pilation techniques.

Now let’s talk about availability. The Internet and active “public” com-

munity-based development have made recent dynamic languages eas-

ily accessible and available. Developers can now easily download lan-

guages and tools and play with them. They can even participate in

community forums to influence the evolution of these languages.3 This

is leading to greater experimentation, learning, and adaptation of lan-

guages than in the past.

Now it’s time to talk about the awareness of unit testing. Most dynamic

languages are dynamically typed. The types are often inferred based

on the context. There are no compilers to flag type-casting violations

at compile time. Since quite a bit of code may be synthesized and your

program can be extended at runtime, you can’t simply rely upon coding-

time verification alone. Writing code in dynamic languages requires a

greater discipline from the testing point of view. Over the past few years,

we’ve seen greater awareness among programmers (though not suffi-

ciently greater adoption yet) in the area of testing in general and unit

testing in particular. Most of the programmers who have taken advan-

tage of these dynamic languages for commercial application develop-

ment have also embraced testing and unit testing.4

Finally, let’s discuss the fourth bullet point listed earlier. Many devel-

opers have in fact been using dynamic languages for decades. How-

ever, for the majority of the industry to be excited about them, we

had to have killer applications—those compelling stories to share with

your developers and managers. That tipping point, for Ruby in partic-

ular and for dynamic languages in general, came in the form of Rails

([TH05], [SH07], [Tat06]). Rails showed struggling web developers how

they could quickly develop applications using the dynamic capabilities

of Ruby. Along the same vein came Grails built using Groovy and Java,

Django built using Python, and Lift built using Scala, to mention a few.

3. The Groovy users mailing list is very active, with constant discussions from passion-

ate users expressing opinions, ideas, and criticisms on current and future features. Visit

http://groovy.codehaus.org/Mailing+Lists and http://groovy.markmail.org if you don’t believe me.
4. “Legacy code is simply code without tests.” —Michael C. Feathers [Fea04]

http://groovy.codehaus.org/Mailing+Lists
http://groovy.markmail.org
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=18

WHAT’S GROOVY? 19

These frameworks have caused enough stir in the development commu-

nity to make the industry-wide adoption of dynamic languages a highly

probable event in the near future.

I find that dynamic languages, along with metaprogramming capabil-

ities, make simple things simpler and harder things manageable. You

still have to deal with the inherent complexity of your application, but

dynamic languages let you focus your effort where it’s deserved. When I

got into Java (after years of C++), features such as reflection, a good set

of libraries, and evolving framework support made me productive. The

JVM, to a certain extent, provided me with the ability to take advan-

tage of metaprogramming. However, I had to use something in addition

to Java to tap into that potential—heavyweight tools such as AspectJ.

Like several other productive programmers, I found myself left with two

options. The first option was to use the exceedingly complex and not-

so-flexible Java along with heavyweight tools. The second option was

to move on to using dynamic languages such as Ruby that are object-

oriented and have metaprogramming capability built in (for instance, it

takes only a couple of lines of code to do AOP in Ruby and Groovy). A

few years ago, taking advantage of dynamic capabilities and metapro-

gramming and being productive at the same time meant leaving behind

the Java platform. (After all, you use these features to be productive

and can’t let them slow you down, right?) That is not the case any-

more. Languages such as Groovy and JRuby are dynamic and run on

the JVM. They allow you to take full advantage of both the rich Java

platform and dynamic language capabilities.

1.2 What’s Groovy?

Groovy5 is a lightweight, low-ceremony, dynamic, object-oriented lan-

guage that runs on the JVM. Groovy is open sourced under Apache

License, version 2.0. It derives strength from different languages such

as Smalltalk, Python, and Ruby while retaining a syntax familiar to

Java programmers. Groovy compiles into Java bytecode and extends

the Java API and libraries. It runs on Java 1.4 or newer. For deploy-

ment, all you need is a Groovy JAR in addition to your regular Java

stuff, and you’re all set.

5. Merriam-Webster defines Groovy as “marvelous, wonderful, excellent, hip, trendy.”

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=19

WHY GROOVY? 20

I like to define Groovy as “a language that has been reborn several

times.”6 James Strachan and Bob McWhirter started it in 2003, and it

was commissioned into Java Specification Request (JSR 241) in March

2004. Soon after, it was almost abandoned because of various difficul-

ties and issues. Guillaume Laforge and Jeremy Rayner decided to rekin-

dle the efforts and bring Groovy back to life. Their first effort was to fix

bugs and stabilize the language features. The uncertainty lingered on

for a while. I know a number of people (committers and users) who sim-

ply gave up on the language at one time. Finally, a group of smart and

enthusiastic developers joined force with Guillaume and Jeremy, and a

vibrant developer community emerged. JSR version 1 was announced

in August 2005.

Groovy version 1.0 release was announced on January 2, 2007. It was

encouraging to see that, well before it reached 1.0, Groovy was put

to use on commercial projects in a handful of organizations in the

United States and Europe. In fact, I’ve seen growing interest in Groovy

in conferences and user groups around the world. Several organiza-

tions and developers are beginning to use Groovy at various levels on

their projects, and I think the time is ripe for major Groovy adoption in

the industry. Groovy version 1.5 was released on December 7, 2007.

Grails ([Roc06], [Rud07]),7 built using Groovy and Java, is a dynamic

web development framework based on “coding by convention.” It allows

you to quickly build web applications on the JVM using Groovy, Spring,

Hibernate, and other Java frameworks.

1.3 Why Groovy?

As a Java programmer, you don’t have to switch completely to a differ-

ent language. Trust me, Groovy feels like the Java language you already

know with but with a few augmentations.

There are dozens of scripting languages8 that can run on the JVM, such

as Groovy, JRuby, BeanShell, Scheme, Jaskell, Jython, JavaScript, etc.

The list could go on and on. Your language choice should depend on a

number of criteria: your needs, your preferences, your background, the

projects you work with, your corporate technical environment, and so

6. See “A bit of Groovy history,” a blog by Guillaume Laforge at http://glaforge.free.fr/

weblog/index.php?itemid=99.
7. See Jason Rudolph’s “Getting Started with Grails” in Appendix A, on page 291.
8. https://scripting.dev.java.net

http://glaforge.free.fr/weblog/index.php?itemid=99
http://glaforge.free.fr/weblog/index.php?itemid=99
https://scripting.dev.java.net
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=20

WHY GROOVY? 21

on. In this section, I will discuss whether Groovy is the right language

for you.

As a programmer, I am shameless about languages. I can comfortably

program in about eight structured, object-oriented, and functional pro-

gramming languages and can come dangerously close to writing code

in a couple more. In any given year, I actively code in about two to three

languages at least. So, if one thing, I am pretty unbiased when it comes

to choosing a language—I will pick the one that works the best for a

given situation. I am ready to change to another language with the ease

of changing a shirt, if that is the right thing to do, that is.

Groovy is an attractive language for a number of reasons:

• It has a flat learning curve.

• It follows Java semantics.

• It bestows dynamic love.

• It extends the JDK.

I’ll now expand on these reasons. First, you can take almost any Java

code9 and run it as Groovy. The significant advantage of this is a flat

learning curve. You can start writing code in Groovy and, if you’re

stuck, simply switch gears and write the Java code you’re familiar with.

You can later refactor that code and make it groovier.

For example, Groovy understands the traditional for loop. So, you can

write this:

// Java Style

for(int i = 0; i < 10; i++)

{

//...

}

As you learn Groovy, you can change that to the following code or one

of the other flavors for looping in Groovy (don’t worry about the syntax

right now; after all, you’re just getting started, and very soon you’ll be

a pro at it):

10.times {

//...

}

9. See Section 3.8, Gotchas, on page 67 for known problem areas.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=21

WHY GROOVY? 22

Second, when programming in Groovy, you can expect almost every-

thing you expect in Java. Groovy classes extend the same good old

java.lang.Object—Groovy classes are Java classes. The OO paradigm

and Java semantics are preserved, so when you write expressions and

statements in Groovy, you already know what those mean to you as a

Java programmer.

Here’s a little example to show you that Groovy classes are Java classes:

Download Introduction/UseGroovyClass.groovy

println XmlParser.class

println XmlParser.class.superclass

If you run groovy UseGroovyClass, you’ll get the following output:

class groovy.util.XmlParser

class java.lang.Object

Now let’s talk about the third reason to love Groovy. Groovy is dynamic,

and it is optionally typed. If you’ve enjoyed the benefits of other dynamic

languages such as Smalltalk, Python, JavaScript, and Ruby, you can

realize those in Groovy. If you had looked at Groovy 1.0 support for

metaprogramming, it probably left you desiring for more. Groovy has

come a long way since 1.0, and Groovy 1.5 has pretty decent metapro-

gramming capabilities.

For instance, if you want to add the method isPalindrome() to String—a

method that tells whether a word spells the same forward and back-

ward—you can add that easily with only a couple lines of code (again,

don’t try to figure out all the details of how this works right now; you

have the rest of the book for that):

Download Introduction/Palindrome.groovy

String.metaClass.isPalindrome = {->

delegate == delegate.reverse()

}

word = 'tattarrattat'

println "$word is a palindrome? ${word.isPalindrome()}"

word = 'Groovy'

println "$word is a palindrome? ${word.isPalindrome()}"

The following output shows how the previous code works:

tattarrattat is a palindrome? true

Groovy is a palindrome? false

Finally, as a Java programmer, you rely heavily on the JDK and the API

to get your work done. These are still available in Groovy. In addition,

http://media.pragprog.com/titles/vslg/code/Introduction/UseGroovyClass.groovy
http://media.pragprog.com/titles/vslg/code/Introduction/Palindrome.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=22

WHAT’S IN THIS BOOK? 23

Groovy extends the JDK with convenience methods and closure support

through the GDK. Here’s a quick example of an extension in GDK to the

java.util.ArrayList class:

lst = ['Groovy', 'is', 'hip']

println lst.join(' ')

println lst.getClass()

The output from the previous code confirms that you’re still working

with the JDK but that you used the Groovy-added join() method to con-

catenate the elements in the ArrayList:

Groovy is hip

class java.util.ArrayList

You can see how Groovy takes the Java you know and augments it.

If your project team is familiar with Java, if they’re using it for most

of your organization’s projects, and if you have a lot of Java code to

integrate and work with, then you will find that Groovy is a nice path

toward productivity gains.

1.4 What’s in This Book?

This book is about programming using the Groovy language. I make no

assumptions about your knowledge of Groovy or dynamic languages,

although I do assume you are familiar with Java and the JDK. Through-

out this book, I will walk you through the concepts of the Groovy lan-

guage, presenting you with enough details and a number of examples

to illustrate the concepts. My objective is for you to get proficient with

Groovy by the time you put this book down, after reading a substantial

portion of it, of course.

The rest of this book is organized as follows:

The book has has three parts: “Beginning Groovy,” “Using Groovy,” and

“MOPping Groovy.”

In the chapters in Part 1, “Beginning Groovy,” I focus on the whys and

whats of Groovy—those fundamentals that’ll help you get comfortable

with general programming in Groovy. Since I assume you’re familiar

with Java, I don’t spend any time with programming basics, like what

an if statement is or how to write it. Instead, I take you directly to the

similarities of Groovy and Java and topics that are specific to Groovy.

In the chapters in Part 2, “Using Groovy,” I focus on how to use Groovy

for everyday coding—working with XML, accessing databases, and

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=23

WHAT’S IN THIS BOOK? 24

working with multiple Java/Groovy classes and scripts—so you can put

Groovy to use right away for your day-to-day tasks. I also discuss the

Groovy extensions and additions to the JDK so you can take advantage

of both the power of Groovy and the JDK at the same time.

In the chapters in Part 3, “MOPping Groovy,” I focus on the metapro-

gramming capabilities of Groovy. You’ll see Groovy really shine in these

chapters and learn how to take advantage of its dynamic nature. You’ll

start with the fundamentals of MetaObject Protocol (MOP), learn how to

do aspect-oriented programming (AOP) such as operations in Groovy,

and learn about dynamic method/property discovery and dispatching.

Then you’ll apply those right away to creating and using builders and

domain-specific languages (DSLs). Unit testing is not only necessary in

Groovy because of its dynamic nature, but it is also easier to do—you

can use Groovy to unit test your Java and Groovy code, as you’ll see in

this part of the book.

Here’s what’s in each chapter:

Part 1: “Beginning Groovy”

In Chapter 2, Getting Started, on page 30, you’ll download and install

Groovy and take it for a test-drive right away using groovysh and groovy-

Console. You’ll also learn how to run Groovy without these tools—from

the command line and within your IDEs.

In Chapter 3, Groovy for the Java Eyes, on page 37, you’ll start with

familiar Java code and refactor that to Groovy. After a quick tour of

Groovy features that improve your everyday Java coding, you’ll learn

about Groovy’s support for Java 5 features. Groovy follows Java seman-

tics, except in places it does not—you’ll also learn gotchas that’ll help

avoid surprises.

In Chapter 4, Dynamic Typing, on page 75, you’ll see how Groovy’s

typing is similar and different from Java’s typing, what Groovy really

does with the type information you provide, and when to take advan-

tage of dynamic typing vs. optional typing. You’ll also learn how to take

advantage of Groovy’s dynamic typing, design by capability, and multi-

methods.

In Chapter 5, Using Closures, on page 92, you’ll learn all about the

exciting Groovy feature called closures, including what they are, how

they work, and when and how to use them.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=24

WHAT’S IN THIS BOOK? 25

In Chapter 6, Working with Strings, on page 111, you’ll learn about

Groovy strings, working with multiline strings, and Groovy’s support

for regular expressions.

In Chapter 7, Working with Collections, on page 124, you’ll explore

Groovy’s support for Java collections—lists and maps. You’ll learn var-

ious convenience methods on collections, and after this chapter, you’ll

never again want to use your collections the old way.

Part 2: “Using Groovy”

Groovy embraces and extends the JDK. You’ll explore the GDK and

learn the extensions to Object and other Java classes in Chapter 8,

Exploring the GDK, on page 141.

Groovy has pretty good support for working with XML, including pars-

ing and creating XML documents, as you’ll see in Chapter 9, Working

with XML, on page 155.

Chapter 10, Working with Databases, on page 164 presents Groovy’s

SQL support, which will make your database-related programming easy

and fun. In this chapter, you’ll learn about iterators, datasets, and how

to perform regular database operations using simpler syntax and clo-

sures. I’ll also show how to get data from Microsoft Excel documents.

One of the key strengths of Groovy is the integration with Java. In

Chapter 11, Working with Scripts and Classes, on page 172, you’ll learn

ways to closely interact with multiple Groovy scripts, Groovy classes,

and Java classes from within your Groovy and Java code.

Part 3: “MOPping Groovy”

Metaprogramming is one of the biggest benefits of dynamic languages

and Groovy; it has the ability to inspect classes at runtime and dynam-

ically dispatch method calls. You’ll explore Groovy’s support for meta-

programming in Chapter 12, Exploring Meta-Object Protocol (MOP), on

page 184, beginning with the fundamentals of how Groovy handles

method calls to Groovy objects and Java objects.

Groovy allows you to perform AOP-like method interceptions using

GroovyInterceptable and ExpandoMetaClass, as you’ll see in Chapter 13,

Intercepting Methods Using MOP, on page 194.

In Chapter 14, MOP Method Injection and Synthesis, on page 202, you’ll

dive into Groovy metaprogramming capabilities that allow you to inject

and synthesize methods at runtime.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=25

WHO IS THIS BOOK FOR? 26

In Chapter 15, MOPping Up, on page 224, you will learn how to syn-

thesize classes dynamically, how to use metaprogramming to delegate

method calls, and how to choose between different metaprogramming

techniques you’ve learned in the previous three chapters.

Unit testing is not a luxury or a “if-we-have-time” practice in Groovy.

The dynamic nature of Groovy requires unit testing, and fortunately, at

the same time, it facilitates writing tests and creating mock objects, as

you’ll learn in Chapter 16, Unit Testing and Mocking, on page 234. You

will learn techniques that will help you use Groovy to unit test your

Java code and Groovy code.

Groovy builders are specialized classes that help you build internal

DSLs for a nested hierarchy. You can learn how to use them and to

create your own builders in Chapter 17, Groovy Builders, on page 260.

You can apply Groovy’s metaprogramming capabilities to build internal

DSLs using the techniques you’ll learn in Chapter 18, Creating DSLs

in Groovy, on page 277. You’ll start by learning about DSLs, including

their characteristics, and quickly jump in to build them in Groovy.

Finally, Appendix A, on page 291 and Appendix B, on page 296, gather

together all the references to web articles and books cited throughout

this book.

1.5 Who Is This Book For?

This book is for developers working on the Java platform. It is better

suited for programmers (and testers) who understand the Java lan-

guage fairly well. Other developers who understand programming in

other languages can use this book as well, but they should supplement

it with books that provide them with an in-depth understanding of Java

and the JDK.

Programmers who are somewhat familiar with Groovy can use this book

to learn some tips and tricks of the language that they may not other-

wise have the opportunity to explore. Finally, those already familiar

with Groovy may find this book useful for training or coaching fellow

developers in their organizations.

1.6 Acknowledgments

Writing a book is like writing a screenplay—a lot of things are added,

changed, and deleted from the original manuscript. What you’re hold-

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=26

ACKNOWLEDGMENTS 27

ing in your hand is a work I started, but a number of people helped get

it into its current form. If you find this book useful and interesting, it

was a result of a collective effort. Any mistakes you find are my own—I

take responsibility for those.

First, I thank Daniel Steinberg for editing this book. His command of

the subject, attention to the detail, patience, and real-time response10

were instrumental to the quality and record-time completion of this

book. I call his edits “immense quality at Internet speed.”

I thank Dave Thomas, Andy Hunt, Steve Peter, Kim Wimpsett, and the

rest of the Pragmatic team who worked behind the scenes to get this

book published. The Pragmatic Bookshelf’s writing process is agile, and

I can’t imagine writing a book any other way without the simple yet

effective tools, facilities, and practices they’ve created.

I had the privilege of a number of Groovy and Grails committers review-

ing this book. I thank Alexandru Popescu, Dierk Konig, Graeme Rocher,

Guillaume Laforge, Jason Rudolph, Jeff Brown, John Wilson, and Rus-

sel Winder for their valuable input, corrections, and clarifications. I

also thank the other Groovy committers and community for their help

through the Groovy users mailing list—for answering my questions,

explaining things I didn’t understand, and quickly fixing the bugs I

found.

I thank Brian Sletten, David Geary, Joe McTee, Nathaniel Schutta,

Scott Davis, Scott Leberknight, and Stuart Halloway for taking time

away from their extremely busy schedules to review this book and offer

their valuable input.

I also thank the developers who purchased this book in the beta form.

You started giving feedback within 24 hours of the release of the beta

book! Thank you Adam Rinehart, Alan Thompson, Frederic Jean, John

Loizeaux, Kevin Hutchinson, Richard Boreiko, Tim Hennekey, and Todd

W. Crone for your feedback, suggestions, and corrections.

I thank those wonderful developers who have endured my training, con-

ference presentations, and podcasts. The questions you asked, your

genuine interest, and your constructive feedback were very helpful—

you gave me confidence and encouraged me to continue writing.

10. I was surprised when I checked in a chapter around 6 a.m. on a Sunday and got

high-quality feedback from Dan within a couple of hours.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=27

ACKNOWLEDGMENTS 28

I thank Jay Zimmerman for giving me the opportunity to present a

number of these concepts at the No Fluff Just Stuff conferences (http://

www.nofluffjuststuff.com) around the world and for creating a community

of exceptional speakers and developers.

Special thanks to the NFJS opinionated geeks—excuse me, I mean my

friends and fellow speakers—who I meet several weekends each year for

their friendship, passion, opinions, and discussions on various topics.

Where else do you find guys who argue checked vs. unchecked excep-

tions for three hours in a London restaurant and then some back at the

hotel?

Writing this book would not even have been imaginable without my

wife’s encouragement, support, and sacrifice. She has been too gener-

ous to me over the past several years, especially when I disappeared

while writing this book. Thank you, Kavitha, for giving me the wings.

My sincere thanks to my sons, Karthik and Krupakar, for being so kind

and understanding—you guys are my inspiration.

http://www.nofluffjuststuff.com
http://www.nofluffjuststuff.com
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=28

Part I

Beginning Groovy

Chapter 2

Getting Started
You’re probably eager to crank out some Groovy code, right? Well, first

you need to get Groovy installed. In this chapter, I’ll show you how to

quickly install Groovy and make sure everything is working well on your

system. Taking care of these basics now will help you move quickly to

the fun things ahead.

2.1 Getting Groovy

Getting a stable working copy of Groovy is really simple: just visit the

Groovy home page at http://groovy.codehaus.org, and click the Download

link. You can download either the binary release or the source release.

Download the source release if you want to build Groovy locally on your

box or you want to explore the source code. Otherwise, I recommend

you download the binary release. (If you’re on Windows, you can also

get the Windows Installer version, though I find it more fulfilling to get

the binary release and set up the necessary path myself.) While you’re

there, you may also want to grab the documentation for Groovy.

If you’re like some of the programmers on the Groovy users mailing

list, the previously mentioned releases will not suffice. If you want the

latest drop of the evolving language implementation, visit http://build.

canoo.com/groovy/. Once there, click the Build Artifacts link and then

the Deliverables link. Next, pick the binary or source version as you

desire.

You also need—and you most likely already have—the JDK 1.4 or newer

(see http://java.sun.com/javase/downloads/index.jsp). I recommend at least

JDK 1.5 if you want to enjoy the Java 5 features supported in Groovy.

http://groovy.codehaus.org
http://build.canoo.com/groovy/
http://build.canoo.com/groovy/
http://java.sun.com/javase/downloads/index.jsp

INSTALLING GROOVY 31

Finally, make sure to confirm that you have Java installed on your

system.

2.2 Installing Groovy

Let’s get Groovy installed. In the following sections, I’m assuming you’ve

downloaded the Groovy 1.5.4 binary distribution and have already in-

stalled the JDK (Section 2.1, Getting Groovy, on the preceding page).

Installing Groovy on Windows

If you have the one-click installer for Windows, run it, and follow the

instructions.

If you downloaded the binary distribution package, unzip it. Move the

groovy-1.5.4 directory to a desired location.1 For instance, on my Win-

dows system, I have it in the C:\programs\groovy directory.

The next step is to set the GROOVY_HOME environment variable and

the path. Edit your system environment variables (by going into Con-

trol Panel and opening the System application). Create an environment

variable named GROOVY_HOME, and set it to the location of your Groovy

directory (for example, I set it to C:\programs\groovy\groovy-1.5.4). Also,

add %GROOVY_HOME%\bin to the path environment variable to set the

location of the Groovy bin directory in the path. Remember to separate

directories in your path using a semicolon (;).

Next, confirm that the environment variable JAVA_HOME is pointing to

the location of your JDK directory (if it’s not present, set it).

That’s pretty much all you have to do. Remember to close any open

command window, because the changes to environment variables don’t

take effect until you reopen command windows. In a new command

window, type groovy -v, and make sure it reports version 1.5.4.

Installing Groovy on Unix-like Systems

Unzip the binary distribution you downloaded.2 Move the groovy-1.5.4

directory to a desired location. For instance, on my Mac system, I have

it in the /opt/groovy directory.

1. Since path names with whitespace often cause grief, I recommend a path with no

whitespace in its name.
2. Check http://groovy.codehaus.org/Download if there are special distributions and

instructions for your flavor of Unix.

http://groovy.codehaus.org/Download
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=31

TEST -DRIVE USING GROOVYSH 32

The next step is to set the GROOVY_HOME environment variable and

the path. Depending on the shell you use, you have to edit different

profile files. You probably know where to go—refer to the appropriate

documentation if you need help figuring out what to edit. I use bash,

so I edited the ~/.bash_profile file. In that file, I added an entry export

GROOVY_HOME="/opt/groovy/groovy-1.5.4" to set the environment variable

GROOVY_HOME. Also add $GROOVY_HOME/bin to the path environment

variable.

Next, confirm that the environment variable JAVA_HOME is pointing to

the location of your JDK directory (if it’s not present, set it). ls -l ‘which

java‘ should help you determine the location of your Java installation.

That’s pretty much all you have to do. Remember to close any open

terminal windows because changes to environment variables don’t take

effect until you reopen the windows.3 In a new terminal window, type

the command groovy -v, and make sure it reports version 1.5.4. That’s

all there is to it!

2.3 Test-Drive Using groovysh

OK, you’ve installed Groovy and checked the version—it’s time to take

it for a test-drive. The quickest way to play with Groovy is to use

the command-line tool groovysh. Open a terminal window, and type

groovysh; you’ll see a shell as shown in Figure 2.1, on the next page.

Go ahead and type some Groovy statements to see how it works.

groovysh is a good tool for interactively trying out small Groovy code

examples. It is also useful for experimenting with some code while

you’re in the middle of coding.4 The groovysh command compiles and

executes completed statements as soon as you hit the Enter/Return

key, and it prints the result of that statement execution along with any

output from the execution.

If you type Math.sqrt(16), for example, it prints the result 4.0. However, if

you type println ’Test drive Groovy’, it prints the words in quotes followed

by null—indicating that println() returned nothing.

3. If you like, you can source your profile file instead, but launching another terminal

window is darn cheap, so why bother?
4. Be aware, however, that groovysh has some idiosyncrasies. If you run into problems

with it, use the save command to save the code to a file and then try running from the

command line using the groovy command to get around any tool-related issues.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=32

USING GROOVYCONSOLE 33

Figure 2.1: Using the groovysh command-line tool

You can also type code that spans multiple lines—simply use a semi-

colon at the end of the line if it complains, as I’ve done in the line

defining the dynamic method isPalindrome(). When you type a class, a

method, or even an if statement, groovysh has to wait until you finish in

order to execute that code. You’ll see that it tells you how many lines it

has accumulated for execution next to the groovy: prompt.

Type help to get a list of supported commands. You can use the up

arrow to view commands you have already typed, which is useful for

repeating statements or commands. It even remembers commands you

typed from previous invocations.

When you’re done, type exit to exit from the tool.

2.4 Using groovyConsole

If you’re not a command-line person and instead prefer a GUI, Groovy

has got you covered—simply double-click groovyConsole.bat in Windows

Explorer (you’ll find it in the %GROOVY_HOME%\bin directory). Users of

Unix-like systems can double-click the groovyConsole executable script

using their favorite file/directory-browsing tool. A console GUI will pop

up, as shown in Figure 2.2, on the following page.

Go ahead and type some Groovy code in the top window of the console.

When you’re ready to execute the code, press Ctrl+R or Ctrl+Enter on

your Windows system or Command+R or Command+Enter on your Mac

system.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=33

RUNNING GROOVY ON THE COMMAND LINE 34

Figure 2.2: Using groovyConsole

You can also click the appropriate toolbar button to execute your script.

The groovyConsole command has grown fancier over time—you can save

your script, open existing scripts, and so on, so take some time to

explore the tool.

2.5 Running Groovy on the Command Line

Of course, nothing can give you as much pleasure as getting into the

command line and running the program from there, right? You can do

that by typing the command groovy followed by the Groovy program

filename, as shown in Figure 2.3, on the next page.

If you want to try a couple of statements directly on the command line,

you can do that by using the -e option. Type groovy -e "println ’hello’" on

the command line, and hit Enter/Return. Groovy will output “hello.”

You can get a bit fancier and even pass command-line arguments, as

shown here:

groovy -e 'println "Hello, ${args[0]}. ${args[1]}"' Buddy 'Have a nice day!'

Groovy will report the following:

Hello, Buddy. Have a nice day!

Realistically, though, the groovy command is useful to execute large

Groovy scripts and classes. It expects you to either have some exe-

cutable code outside any class or have a class with a static main(String[]

args) method (the traditional Java main() method).

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=34

USING AN IDE 35

Figure 2.3: Running from the command line

You can also skip the main() method if your class extends GroovyTestCase

(see Section 16.2, Unit Testing Java and Groovy Code, on page 236 for

more information) or if your class implements the Runnable interface.5

2.6 Using an IDE

You’ll be happy to hear that you’ll quickly graduate from the two tools

we’ve talked about so far. Therefore, once you start churning out Groovy

code, you’ll want to use an IDE. Fortunately, you have several IDEs to

choose from for coding Groovy. See http://groovy.codehaus.org/IDE+Support

for some choices. You can edit your Groovy code, run it from within

your IDE, debug your code, and a lot more...depending on which tool

you pick.

IntelliJ IDEA and JetGroovy

IntelliJ IDEA offers outstanding support for Groovy through the Jet-

Groovy plug-in (http://www.jetbrains.com/idea). Using it, you can edit

Groovy code, take advantage of code completion, get support for Groovy

builders, use syntax and error highlighting, use code formatting and

inspection, jointly compile Java and Groovy code, refactor and debug

both Java and Groovy code, and work with and build Java and Groovy

code in the same project. It also supports Grails projects with built-in

Grails generators and GSP code completion and assistance.

Eclipse Groovy Plug-In

If you are an Eclipse user, you can use the Groovy Eclipse plug-in

(http://groovy.codehaus.org/Eclipse+Plugin). This plug-in allows you to edit

Groovy classes and scripts, take advantage of syntax highlighting, and

compile and run the code and tests. Using the Eclipse Debugger, you

5. If the main() method is present in these cases, it takes precedence.

http://groovy.codehaus.org/IDE+Support
http://www.jetbrains.com/idea
http://groovy.codehaus.org/Eclipse+Plugin
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=35

USING AN IDE 36

Figure 2.4: Groovy code executed within TextMate

can step into Groovy code or debug unit tests. In addition, you can

invoke the Groovy shell or Groovy console from within Eclipse to quickly

experiment with Java and Groovy code.

TextMate Groovy Bundle

As a Mac user, I use the Groovy bundle (http://docs.codehaus.org/display/

GROOVY/TextMate) in TextMate (http://macromates.com, [Gra07]) exten-

sively.6 It provides a number of time-saving snippets that allow code

expansion for standard Groovy code such as closures. You can take

advantage of syntax highlighting and run Groovy code and tests quickly

from within TextMate,7 as shown in Figure 2.4.

It’s nice to have a choice of command-line and IDE tools. However, you

need to decide which tool is right for you. Personally, I find it easier to

simply run Groovy code directly from within the editor or IDE, letting

the groovy tool take care of compiling and executing the code behind the

scene. That helps with my “rapid edit, code, and run-my-tests” cycle.

At times, I find myself jumping over to groovysh to experiment with code

snippets. But you don’t have to do what I do. The right tool for you is

the one you’re most comfortable with. Start with a simple tool and the

steps that work for you. Once you get comfortable, you can always scale

up to something more sophisticated when you need to do so.

In this chapter, you installed Groovy and took it for a quick test-drive.

Along the way you looked at a few command-line tools and IDE support.

That means you’re all set to explore Groovy in the next chapter.

6. Windows users—take a look at E Text Editor at http://www.e-texteditor.com. Also, for

editing small code snippets, you can use Notepad2 (see http://tinyurl.com/yqfucf).
7. See my blog entry at http://tinyurl.com/ywotsj for a minor tweak to quickly display results

without a pop-up window.

http://docs.codehaus.org/display/GROOVY/TextMate
http://docs.codehaus.org/display/GROOVY/TextMate
http://macromates.com
http://www.e-texteditor.com
http://tinyurl.com/yqfucf
http://tinyurl.com/ywotsj
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=36

Chapter 3

Groovy for the Java Eyes
I’ll help you ease into Groovy in this chapter. Specifically, we’ll start

on familiar ground and then transition into the Groovy way of writ-

ing. Since Groovy preserves Java syntax and semantics, you can mix

Java style and Groovy style at will. And, as you get comfortable with

Groovy, you can make your code even groovier. So, get ready for a tour

of Groovy. We’ll wrap this chapter with some “gotchas”—a few things

that might catch you off guard if you aren’t expecting them.

3.1 From Java to Groovy

Groovy readily accepts your Java code. So, start with the code you’re

familiar with, but run it through Groovy. As you work, figure out elegant

and Groovy ways to write your code. You’ll see that your code is doing

the same things, but it’s a lot smaller. It’ll feel like your refactoring is

on steroids.

Hello, Groovy

Here a Java sample that’s also Groovy code:

// Java code

public class Greetings

{

public static void main(String[] args)

{

for(int i = 0; i < 3; i++)

{

System.out.print("ho ");

}

System.out.println("Merry Groovy!");

}

}

FROM JAVA TO GROOVY 38

Default Imports

You don’t have to import some common classes/packages
when you write Groovy code. For example, Calendar read-
ily refers to java.util.Calendar. Groovy automatically imports
the following Java packages: java.lang, java.util, java.io,
and java.net. It also imports the classes java.math.BigDecimal

and java.math.BigInteger. In addition, the Groovy packages
groovy.lang and groovy.util are imported.

The output from the previous code is as follows:

ho ho ho Merry Groovy!

That’s a lot of code for such a simple task. Still, Groovy will obediently

accept and execute it. Simply save that code to a file named Greet-

ings.groovy, and execute it using the command groovy Greetings.

Groovy has a higher signal-to-noise ratio. Hence, less code, more result.

In fact, you can get rid of most of the code from the previous program

and still have it produce the same result. Start by removing the line-

terminating semicolons first. Losing the semicolons not only reduces

noise, but it also helps to use Groovy to implement internal DSLs

(Chapter 18, Creating DSLs in Groovy, on page 277).

Then remove the class and method definition. Groovy is still happy (or

is it happier?).

Download GroovyForJavaEyes/LightGreetings.groovy

for(int i = 0; i < 3; i++)

{

System.out.print("ho ")

}

System.out.println("Merry Groovy!")

You can go even further. Groovy understands println() because it has

been added on java.lang.Object. It also has a lighter form of the for loop

that uses the Range object, and Groovy is lenient with parentheses. So,

you can reduce the previous code to the following:

Download GroovyForJavaEyes/LighterGreetings.groovy

for(i in 0..2) { print 'ho ' }

println 'Merry Groovy!'

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/LightGreetings.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/LighterGreetings.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=38

FROM JAVA TO GROOVY 39

The output from the previous code is the same as the Java code you

started with, but the code is a lot lighter. That just goes to show you

that simple things are simple to do in Groovy.

Ways to Loop

You’re not restricted to the traditional for loop in Groovy. You already

used the range 0..2 in the for loop. Wait, there’s more.1

Groovy has added a convenient upto() instance method to java.lang.

Integer, so you can loop using that method, as shown here:

Download GroovyForJavaEyes/WaysToLoop.groovy

0.upto(2) { print "$it "}

Here you called upto() on 0, which is an instance of Integer. The output

from the previous code is as follows:

0 1 2

So, what’s that it in the code block? In this context, it represents the

index value through the loop. The upto() method accepts a closure as a

parameter. If the closure expects only one parameter, you can use the

default name it for it in Groovy. Keep that in mind, and move on for

now; we’ll discuss closures in more detail in Chapter 5, Using Closures,

on page 92. The $ in front of the variable it tells the method println() to

print the value of the variable instead of the characters “it”—it allows

you to embed expressions within strings, as you’ll see in Chapter 6,

Working with Strings, on page 111.

The upto() method allows you to set both lower and upper limits. If you

start at 0, you can also use the times() method, as shown here:

Download GroovyForJavaEyes/WaysToLoop.groovy

3.times { print "$it "}

The output from previous code is as follows:

0 1 2

If you want to skip values while looping, use the step() method:

Download GroovyForJavaEyes/WaysToLoop.groovy

0.step(10, 2) { print "$it "}

The output from the previous code is as follows:

0 2 4 6 8

1. http://groovy.codehaus.org/Looping

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://groovy.codehaus.org/Looping
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=39

FROM JAVA TO GROOVY 40

You’ve now seen simple looping in action. You can also iterate or tra-

verse a collection of objects using similar methods, as you’ll see later in

Chapter 7, Working with Collections, on page 124.

To go further, you can rewrite the greetings example using the methods

you learned earlier. Look at how short the following Groovy code is

compared to the Java code you started with:

Download GroovyForJavaEyes/WaysToLoop.groovy

3.times { print 'ho ' }

println 'Merry Groovy!'

To confirm, the output from the previous code is as follows:

ho ho ho Merry Groovy!

A Quick Look at the GDK

Groovy extends the JDK with an extension called the GDK2 or the

Groovy JDK. I’ll whet your appetite here with a quick example.

In Java, you can use java.lang.Process to interact with a system-level

process. Suppose you want to invoke Subversion’s help from within

your code; well, here’s the Java code for that:

//Java code

import java.io.*;

public class ExecuteProcess

{

public static void main(String[] args)

{

try

{

Process proc = Runtime.getRuntime().exec("svn help");

BufferedReader result = new BufferedReader(

new InputStreamReader(proc.getInputStream()));

String line;

while((line = result.readLine()) != null)

{

System.out.println(line);

}

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

2. http://groovy.codehaus.org/groovy-jdk.html

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WaysToLoop.groovy
http://groovy.codehaus.org/groovy-jdk.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=40

FROM JAVA TO GROOVY 41

java.lang.Process is very helpful, but I had to jump through some hoops

to use it in the previous code; in fact, all the exception-handling code

and effort to get to the output makes me dizzy. But the GDK, on the

other hand, makes this insanely simple:

Download GroovyForJavaEyes/Execute.groovy

println "svn help".execute().text

Compare the two pieces of code. They remind me of the sword-fight

scene3 from the movie Raiders of the Lost Ark; the Java code is pulling

a major stunt like the villain with the sword. Groovy, on the other hand,

like Indy, effortlessly gets the job done. Don’t get me wrong—I am cer-

tainly not calling Java the villain. You’re still using Process and the JDK

in Groovy code. Your enemy is the unnecessary complexity that makes

it harder and time-consuming to utilize the power of the JDK and the

Java platform.

Which of the previous two versions would you prefer? The short and

sweet one-liner, of course (unless you’re a consultant who gets paid by

the number of lines of code you write...).

When you called the execute() method on the instance of String, Groovy

created an instance that extends java.lang.Process, just like the exec()

method of Runtime did in the Java code. You can verify this by using the

following code:

Download GroovyForJavaEyes/Execute.groovy

println "svn help".execute().getClass().name

The output from the previous code, when run on a Unix-like machine,

is as follows:

java.lang.UNIXProcess

On a Windows machine, you’ll get this:

java.lang.ProcessImpl

When you call text, you’re calling the Groovy-added method getText() on

the Process to read the process’s entire standard output into a String.4

Go ahead, try the previous code.

3. http://www.youtube.com/watch?v=m5TcfywPj0E

4. If you simply want to wait for a process to finish, use either waitFor() or the Groovy-

added method waitForOrKill() that takes a timeout in milliseconds.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://www.youtube.com/watch?v=m5TcfywPj0E
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=41

FROM JAVA TO GROOVY 42

If you don’t use Subversion, substitute svn help with some other pro-

gram on your system (such as groovy -v), as shown here:

Download GroovyForJavaEyes/Execute.groovy

println "groovy -v".execute().text

The output from the previous code is as follows:

Download GroovyForJavaEyes/Execute.output

Groovy Version: 1.5.4 JVM: 1.6.0_01-41-release

This code sample works on Unix-like systems and on Windows.

Similarly, on a Unix-like system, to get the listing of current directory,

you can call ls:

Download GroovyForJavaEyes/Execute.groovy

println "ls -l".execute().text

If you’re on Windows, simply replacing ls with dir will not work. The

reason is that although ls is a program that you’re executing on Unix-

like systems, dir is not a program—it’s a shell command. So, you have

to do a little more than calling dir. Specifically, you need to invoke cmd

and ask it to execute the dir command, as shown here:

Download GroovyForJavaEyes/Windows/ExecuteDir.groovy

println "cmd /C dir".execute().text

In this section, you’ve merely scratched the surface of the GDK. You can

find more GDK goodness in Chapter 8, Exploring the GDK, on page 141.

Safe Navigation Operator

Groovy has a number of little features that are exciting and help ease

the development effort. You’ll find them throughout this book—one

such feature is the safe navigation operator (?.). It eliminates the mun-

dane check for null, as shown in the following code:

Download GroovyForJavaEyes/Ease.groovy

def foo(str)

{

//if (str != null) { return str.reverse() }

str?.reverse()

}

println foo('evil')

println foo(null)

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.output
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Execute.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Windows/ExecuteDir.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Ease.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=42

FROM JAVA TO GROOVY 43

The ?. operator in method foo()5 calls the method or property only if the

reference is not null. The output from the previous code is as follows:

live

null

The call to reverse() on the null reference using ?. resulted in a null instead

of a NullPointerException—another way Groovy reduces noise.

Exception Handling

I mentioned that Groovy has less ceremony than Java. One area where

that’s crystal clear is in exception handling. Java forces you to handle

checked exceptions. Consider a simple case: you want to call Thread’s

sleep() method.6 Java forces you to catch java.lang.InterruptedException.

What does any respectable Java developer do when forced to do things?

They find a way around doing it. The result? Lots of empty catch blocks,

right? Check this out:

Download GroovyForJavaEyes/Sleep.java

// Java code

try

{

Thread.sleep(5000);

}

catch(InterruptedException ex)

{

// eh? I'm losing sleep over what to do here.

}

Having an empty catch block is worse than not handling an exception.

If you put an empty catch block, you’re suppressing the exception. If

you don’t handle it in the first place, it is propagated to the caller who

either can do something about it or can pass it yet again to its caller.

Groovy does not force you to handle exceptions that you don’t want to

handle or that are inappropriate at your level. Any exception you don’t

handle is automatically passed on to a higher level. Here’s an example

of Groovy’s answer to exception handling:

Download GroovyForJavaEyes/ExceptionHandling.groovy

def openFile(fileName)

{

new FileInputStream(fileName)

}

5. Programming books are required to have at least one method named “foo.”
6. Groovy provides an alternate sleep() method; see Section 8.1, sleep, on page 144.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Sleep.java
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=43

FROM JAVA TO GROOVY 44

The method openFile() does not handle the infamous FileNotFoundExcep-

tion. If the exception occurs, it is not suppressed. Instead, it’s passed to

the calling code, which can handle it, as shown here:

Download GroovyForJavaEyes/ExceptionHandling.groovy

try

{

openFile("nonexistentfile")

}

catch(FileNotFoundException ex)

{

// Do whatever you like about this exception here

println "Oops: " + ex

}

If you are interested in catching all Exceptions that may be thrown, you

can write a catch, as shown here:

Download GroovyForJavaEyes/ExceptionHandling.groovy

try

{

openFile("nonexistentfile")

}

catch(ex)

{

// Do whatever you like about this exception here

println "Oops: " + ex

}

I used catch(ex) without any type in front of the variable ex so I can

catch just about any exception thrown my way. Beware, this doesn’t

catch Errors or Throwables other than Exceptions. To really catch all of

them, use catch(Throwable t).

As you can see, Groovy allows you to focus on getting your work done

rather than tackling annoying system-level details.

Groovy as Lightweight Java

Groovy has other features that make it lighter and easier to use. Here

are some:

• The return statement is almost optional (see Section 3.8, Gotchas,

on page 67).

• ; is almost optional though can be used to separate statements

(see Section 3.8, The Semicolon (;) Is Almost Optional, on page 73).

• Methods and classes are public by default.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ExceptionHandling.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=44

JAVABEANS 45

• The ?. operator dispatches calls only if the object reference is not

null.

• You can initialize JavaBeans using named parameters (see Sec-

tion 3.2, JavaBeans).

• You’re not forced to catch exceptions that you don’t care to handle.

They get passed to the caller of your code.

• You can use this within static methods to refer to the Class object.

For example, in the following code, the learn() methods return the

class so you can chain calls to learn() methods:

class Wizard

{

def static learn(trick, action)

{

//...

this

}

}

Wizard.learn('alohomora', {/*...*/})

.learn('expelliarmus', {/*...*/})

.learn('lumos', {/*...*/})

3.2 JavaBeans

The story of JavaBeans is interesting. When the concept was intro-

duced, it was exciting. It was declared that Java objects would be con-

sidered JavaBeans if they followed certain conventions and that they

would carry properties. That raised a lot of excitement and hope. But

when it came to accessing these properties, I found that calls to mere

getters and setters were required. My excitement came crashing down,

and developers moved on to create thousands of silly methods in their

applications.7 If JavaBeans were human, they’d be on Prozac.8

Groovy treats JavaBeans with the respect they deserve. In Groovy, a

JavaBean truly has properties. Let’s start with Java code and reduce it

to Groovy so you can see what I mean.

7. http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html

8. To be fair, the intent of JavaBean is noble—it made component-based development,

application assembling, and integration practical and paved the way for exceptional IDE

and plug-in development.

http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=45

JAVABEANS 46

Download GroovyForJavaEyes/Car.java

//Java code

public class Car

{

private int miles;

private int year;

public Car(int theYear) { year = theYear; }

public int getMiles() { return miles; }

public void setMiles(int theMiles) { miles = theMiles; }

public int getYear() { return year; }

public static void main(String[] args)

{

Car car = new Car(2008);

System.out.println("Year: " + car.getYear());

System.out.println("Miles: " + car.getMiles());

System.out.println("Setting miles");

car.setMiles(25);

System.out.println("Miles: " + car.getMiles());

}

}

That’s all too familiar Java code, isn’t it? The output from the previous

code is as follows:

Year: 2008

Miles: 0

Setting miles

Miles: 25

Let’s rewrite the code in Groovy:

Download GroovyForJavaEyes/GroovyCar.groovy

class Car

{

def miles = 0

final year

Car(theYear)

{

year = theYear

}

}

Car car = new Car(2008)

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Car.java
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/GroovyCar.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=46

JAVABEANS 47

println "Year: $car.year"

println "Miles: $car.miles"

println 'Setting miles'

car.miles = 25

println "Miles: $car.miles"

That code does the same thing (see the following output), but it has less

clutter and ceremony.

Year: 2008

Miles: 0

Setting miles

Miles: 25

def declared a property in this context.9 Groovy quietly created a getter

and setter method for you behind the scenes (just like how a construc-

tor is created in Java if you don’t write any). When you call miles in your

code, you’re not referencing a field; instead, you’re calling the getter

method for the miles property. If you want a property to be read-only,

then declare it final. This is not defining a final field but a read-only

property—you can change the property from within instance methods

of the defining class, but not from outside. Groovy provides a getter in

this case and no setter. You can verify these concepts with the following

code:

Download GroovyForJavaEyes/GroovyCar2.groovy

class Car

{

final miles = 0

def getMiles()

{

println "getMiles called"

miles

}

def drive(dist) { if (dist > 0) miles += dist }

}

You declared miles as final; however, you can change it from within the

drive() instance method. Let’s use this class now.

9. You can declare properties by either using def as in the example or giving the type

(and optional value) as in int miles or int miles = 0.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/GroovyCar2.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=47

JAVABEANS 48

Download GroovyForJavaEyes/GroovyCar2.groovy

def car = new Car()

println "Miles: $car.miles"

println 'Driving'

car.drive(10)

println "Miles: $car.miles"

try

{

print 'Can I set the miles? '

car.miles = 12

}

catch(groovy.lang.ReadOnlyPropertyException ex)

{

println ex.message

}

The output from the previous code is as follows:

getMiles called

Miles: 0

Driving

getMiles called

Miles: 10

Can I set the miles? Cannot set readonly property: miles for class: Car

If you want to access properties, you don’t need to use getters or setters

anymore in your call. You can see the elegance of this in the following

code:

Download GroovyForJavaEyes/UsingProperties.groovy

Calendar.instance

// instead of Calendar.getInstance()

str = 'hello'

str.class.name

// instead of str.getClass().getName()

// Caution: Won't work for Maps, Builders,...

// use str.getClass().name to be safe

Use caution with the class property, however—some classes like Map

and builders give special treatment to this property (see Section 7.5,

Using Map, on page 133, for example). As a result, I recommend you

use getClass() instead of class to avoid any surprises.

Groovy gives you the flexibility to initialize a JavaBean class. When

constructing an object, simply give values for properties as comma-

separated name-value pairs. This is a postconstruction operation if

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/GroovyCar2.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/UsingProperties.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=48

JAVABEANS 49

your class has a no-argument constructor. You can also design your

methods so they can take named parameters. To take advantage of this

feature, define the first parameter as a Map. Let’s see these in action:

Download GroovyForJavaEyes/NamedParameters.groovy

class Robot

{

def type, height, width

def access(location, weight, fragile)

{

println "Received fragile? $fragile, weight: $weight, loc: $location"

}

}

robot = new Robot(type: 'arm', width: 10, height: 40)

println "$robot.type, $robot.height, $robot.width"

robot.access(50, x: 30, y: 20, z: 10, true)

The output from the previous code is shown next. The instance of Robot

took type, height, and width parameters as name-value pairs. In the call

to the access() method, you set the first parameter, weight, to a single

value, which is an Integer. You set the last parameter, fragile, to a single

value as well. The rest of the parameters in the middle are name-value

pairs for location. The example did not quite follow the same ordering

as in the method definition (though I recommend you do); instead, you

took advantage of some Groovy magic.

If the number of parameters you send is more than the number of

arguments the method expects and if the excess parameters are name-

value pairs, then Groovy assumes the first argument of the method

is a Map and groups all the name-value pairs together as values for

the first parameter. It then takes the rest of the parameters, in the

presented order, as values for the remaining parameters, as shown in

the following output:

arm, 40, 10

Received fragile? true, weight: 50, loc: ["x":30, "y":20, "z":10]

Although the previous Groovy magic is quite powerful, it leads to a

problems, such as when you pass three integer arguments. In this

case, the arguments will be passed in order, no map is created from

the arguments, and the result is not what you desire.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/NamedParameters.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=49

OPTIONAL PARAMETERS 50

You can avoid confusion like this by explicitly naming the first param-

eter as a Map, as shown here:

Download GroovyForJavaEyes/NamedParameters.groovy

def access(Map location, weight, fragile)

{

print "Received fragile? $fragile, weight: $weight, loc: $location"

}

Now, if your arguments do not contain two objects plus arbitrary name-

value pairs, you will get an error.

As you can see, thanks to the makeover Groovy gave JavaBeans, they’re

quite vibrant in Groovy.

3.3 Optional Parameters

In Groovy you can make method and constructor parameters optional.

In fact, make as many parameters optional as you like, but they have to

be trailing. To define an optional parameter, you simply give it a value in

the parameter list. Here’s an example of a log() function that allows you

to optionally give the base (if you don’t set that argument, it assumes

base 10):

Download GroovyForJavaEyes/OptionalParameters.groovy

def log(x, base=10)

{

Math.log(x) / Math.log(base)

}

println log(1024)

println log(1024, 10)

println log(1024, 2)

The output from the previous code is as follows:

3.0102999566398116

3.0102999566398116

10.0

Groovy also treats the trailing array parameter as optional. So, in the

following example, you can send zero or more values for the last param-

eter:

Download GroovyForJavaEyes/OptionalParameters.groovy

def task(name, String[] details)

{

println "$name - $details"

}

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/NamedParameters.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OptionalParameters.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OptionalParameters.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=50

IMPLEMENTING INTERFACES 51

task 'Call', '123-456-7890'

task 'Call', '123-456-7890', '231-546-0987'

task 'Check Mail'

The output from the previous code is as follows:

Call - {"123-456-7890"}

Call - {"123-456-7890", "231-546-0987"}

Check Mail - {}

Providing mundane arguments to methods can get tiring. Optional

parameters reduce noise and allow for sensible defaults.

3.4 Implementing Interfaces

In Groovy you can morph a map or a block of code into implement-

ing interfaces. This allows you to implement interfaces with multiple

methods quickly. In this section, I’ll show a Java way of implement-

ing interfaces, and then you’ll learn how to take advantage of Groovy’s

facilities.

Here’s the all-too-familiar Java code to register an event handler to a

Swing JButton. The call to addActionListener() expects an instance that

implements the ActionListener interface. So, you create an anonymous

inner class that implements ActionListener, and you provide the required

actionPerformed() method. This method insists on taking ActionEvent as

an argument even though you have no use for it in this example.

// Java code

button.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ae)

{

JOptionPane.showMessageDialog(frame, "You clicked!");

}

});

Groovy brings a charming idiomatic difference here—no need for that

actionPerformed() method declaration or that explicit new anonymous

inner class instance!

button.addActionListener(

{ JOptionPane.showMessageDialog(frame, "You clicked!") } as ActionListener

)

You call the addActionListener method and provide it with a block of code

that morphs itself to implement the ActionListener interface because of

the as operator.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=51

IMPLEMENTING INTERFACES 52

That’s it—Groovy takes care of the rest. Groovy intercepts calls to any

method on the interface (actionPerformed(), in this case) and routes it to

the block of code you provided.10

You don’t have to do anything different if you plan to provide one single

implementation for all the methods of a multimethod interface.

Suppose you want to update the display of mouse location in a label as

the mouse is clicked and moved around in your application. In Java,

you have to implement a total of seven methods of the MouseListener and

MouseMotionListener interfaces. Since your implementation for all these

methods are the same, Groovy makes your life easy.

displayMouseLocation = { positionLabel.setText("$it.x, $it.y") }

frame.addMouseListener(displayMouseLocation as MouseListener)

frame.addMouseMotionListener(displayMouseLocation as MouseMotionListener)

In this code, you created the variable displayMouseLocation that refers to

a block of code. You then morphed it twice using the as operator, once

for each of the interfaces, MouseListener and MouseMotionListener. Once

again, Groovy takes care of the rest, and you can move on to focus

on other things. It took three lines of code instead of...—sorry, I’m still

counting—in Java.

In the previous example, you see that variable it again. it represents

the method argument. If a method of the interface you’re implementing

takes multiple arguments, you can define them either as discrete argu-

ments or as a parameter of type array—you’ll see how in Chapter 5,

Using Closures, on page 92.

OK, that was nice, but in most realistic situations, you’d want a differ-

ent implementation for each method of an interface. No worries, Groovy

can handle that. Simply create a map—no, you don’t have to endure

the map syntax of Java. Simply separate the method names from the

code block using a colon (:). Also, you don’t have to implement all the

methods. You implement only those you really care about. If the meth-

ods you don’t implement are never called, you didn’t waste any effort

implementing dummy stubs. Of course, if you fail to provide a method

that’s called, you’ll get a NullPointerException. Let’s put these to use in an

example.

10. If you want to try running this code, you’ll need to create the frame and its compo-

nents; the full listing of the code is shown at the end of this section.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=52

IMPLEMENTING INTERFACES 53

handleFocus = [

focusGained : { msgLabel.setText("Good to see you!") },

focusLost : { msgLabel.setText("Come back soon!") }

]

button.addFocusListener(handleFocus as FocusListener)

Whenever the button in this example gains focus, the first block of code

associated with the key focusGained will be called. When the button

loses focus, the block of code associated with focusLost is called. The

keys in this case correspond to the methods of the FocusListenerInterface.

The as operator is good if you know the name of the interface you’re

implementing. However, what if your application demands dynamic

behavior and you’ll know the interface name only at runtime? Well,

the asType() method comes to your rescue. You can use this method to

morph either a block of code or a map to an interface by sending the

Class metaobject of the interface you want to implement as an argument

to asType(). Let’s look at an example.

Suppose you want to add an event handler for different events: Win-

dowListener, ComponentListener, ... the list may be dynamic. Also suppose

your handler will perform some common operation such as logging or

updating a status bar—some task to help with testing or debugging

your application. You can dynamically add handlers for multiple events

using a single block of code. Here’s how:

events = ['WindowListener', 'ComponentListener']

// Above list may be dynamic and may come from some input

handler = { msgLabel.setText("$it") }

for (event in events)

{

handlerImpl = handler.asType(Class.forName("java.awt.event.${event}"))

frame."add${event}"(handlerImpl)

}

The interfaces you want to implement—that is, the events you want to

handle—are in the list events. This list is dynamic; suppose it will be

populated with input during code execution. The common handler for

the events is in the code block referred to by the variable handler. You

loop through the events, and for each event, you’re creating a imple-

mentation of the interface using the asType() method. This method is

called on the block of code and is given the Class metaobject of the inter-

face obtained using the forName() method. Once you have the imple-

mentation of the listener interface on hand, you can register it by call-

ing the appropriate add method (like addWindowListener()). The call to

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=53

IMPLEMENTING INTERFACES 54

the add method itself is dynamic. You’ll learn more about such methods

later in Section 12.2, Querying Methods and Properties, on page 190.

In the previous code, I used the asType() method on the block of code.

If you have different implementations for different methods, you’d have

a map instead of a single block of code. In that case, you can call the

asType() method on the map in a similar way. Finally, as promised, here

is the full listing of the Groovy Swing code developed in this section:

Download GroovyForJavaEyes/Swing.groovy

import javax.swing.*
import java.awt.*
import java.awt.event.*

frame = new JFrame(size: [300, 300],

layout: new FlowLayout(),

defaultCloseOperation: javax.swing.WindowConstants.EXIT_ON_CLOSE)

button = new JButton("click")

positionLabel = new JLabel("")

msgLabel = new JLabel("")

frame.contentPane.add button

frame.contentPane.add positionLabel

frame.contentPane.add msgLabel

button.addActionListener(

{ JOptionPane.showMessageDialog(frame, "You clicked!") } as ActionListener

)

displayMouseLocation = { positionLabel.setText("$it.x, $it.y") }

frame.addMouseListener(displayMouseLocation as MouseListener)

frame.addMouseMotionListener(displayMouseLocation as MouseMotionListener)

handleFocus = [

focusGained : { msgLabel.setText("Good to see you!") },

focusLost : { msgLabel.setText("Come back soon!") }

]

button.addFocusListener(handleFocus as FocusListener)

events = ['WindowListener', 'ComponentListener']

// Above list may be dynamic and may come from some input

handler = { msgLabel.setText("$it") }

for (event in events)

{

handlerImpl = handler.asType(Class.forName("java.awt.event.${event}"))

frame."add${event}"(handlerImpl)

}

frame.show()

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Swing.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=54

GROOVY BOOLEAN EVALUATION 55

In this section, you saw the Groovy way to implement interfaces. It

makes registering for events or passing anonymous implementations of

interfaces really simple. You’ll find the ability to morph blocks of code

and maps into interface implementations a real time-saver.

3.5 Groovy boolean Evaluation

The truth is that boolean evaluation in Groovy is different from eval-

uation in Java. Depending on the context, Groovy will automatically

evaluate expressions as boolean.

Let’s see a specific example. The following Java code will not work:

//Java code

String obj = "hello";

int val = 4;

if (obj) {} // ERROR

if(val) {} //ERROR

Java insists that you provide a boolean expression for the condition

part of the if statement. It wants if(obj != null) and if(val > 0) in the previous

example, for instance.

Groovy is not that picky. It tries to infer, so you need to know what

Groovy is thinking.

If you place an object reference where a boolean expression is expected,

Groovy checks whether the reference is null. It considers null as false,

and true otherwise, as in the following code:

str = 'hello'

if (str) { println 'hello' }

The output from the previous code is as follows:

hello

But, the last part about true that I mentioned earlier is not entirely true.

If the object reference is not-null, then the truth depends on the type of

the object. For example, if the object is a collection (like java.util.ArrayList),

then Groovy checks whether the collection is empty. So, in this case, the

expression if (obj) evaluates true only if obj is not null and the collection

has at least one element, as shown in the following code example:

lst0 = null

println lst0 ? 'lst0 true' : 'lst0 false'

lst1 = [1, 2, 3]

println lst1 ? 'lst1 true' : 'lst1 false'

lst2 = []

println lst2 ? 'lst2 true' : 'lst2 false'

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=55

OPERATOR OVERLOADING 56

Type Condition for truth

Boolean true

Collection not empty

Character value not 0

CharSequence length greater than 0

Enumeration has more elements

Iterator has text

Number double value not 0

Map not empty

Matcher at least one match

Object[] length greater than 0

any other type reference not null

Figure 3.1: Types and their special treatment for boolean evaluation

You can check your understanding of how Groovy handles boolean for

Collections with the following output:

lst0 false

lst1 true

lst2 false

Collections are not the only things that receive special boolean treat-

ment. For the types with special treatment and how Groovy evaluates

their truth, refer to the table in Figure 3.1.

3.6 Operator Overloading

You can use Groovy’s support for operator overloading, judiciously, to

create DSLs (see Chapter 18, Creating DSLs in Groovy, on page 277).

When Java has no support for operator overloading, how does Groovy

get away with that? It’s really simple, actually—each operator has a

standard mapping to methods.11 So, in Java you can use those meth-

ods, and on the Groovy side you can use either the operators or their

corresponding methods.

11. For a list of operators and method mapping, visit http://groovy.codehaus.org/

Operator+Overloading.

http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/Operator+Overloading
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=56

OPERATOR OVERLOADING 57

Here’s an example to show operator overloading in action:

Download GroovyForJavaEyes/OperatorOverloading.groovy

for(i = 'a'; i < 'd'; i++)

{

println i

}

You’re looping through the characters a through c using the ++ oper-

ator. This operator maps to the next() method on the String class. The

output from the previous code is as follows:

a

b

c

You’ll most likely write the previous code as shown next using a lighter

form of the loop, but both implementations use the next() method of

String:

Download GroovyForJavaEyes/OperatorOverloading.groovy

for (i in 'a'..'c')

{

println i

}

The String class has a number of operators overloaded, as you’ll see

in Section 6.4, String Convenience Methods, on page 120. The collec-

tion classes—ArrayList and Map—similarly have operators overloaded for

convenience.

If you want to add an element to a collection, you can use the << opera-

tor, which translates to the Groovy-added leftShift() method on Collection,

as shown here:

Download GroovyForJavaEyes/OperatorOverloading.groovy

lst = ['hello']

lst << 'there'

println lst

The output from the previous code is as follows:

["hello", "there"]

You can provide operators for your own classes by adding the mapping

methods, like plus() for +, for example.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=57

OPERATOR OVERLOADING 58

Here’s an example showing how to add an operator overloaded method

to a class:

Download GroovyForJavaEyes/OperatorOverloading.groovy

class ComplexNumber

{

def real, imaginary

def plus(other)

{

new ComplexNumber(real: real + other.real,

imaginary: imaginary + other.imaginary)

}

String toString() { "$real ${imaginary > 0 ? '+' : ''} ${imaginary}i"}

}

c1 = new ComplexNumber(real: 1, imaginary: 2)

c2 = new ComplexNumber(real: 4, imaginary: 1)

println c1 + c2

Because you added the plus() method on the ComplexNumber12 class,

Groovy allows you to use + to add two complex numbers to get a result-

ing (more?) complex number. The output from the previous code is as

follows:

5 + 3i

Operator overloading can make code expressive when used within a

context. However, I’m not a big fan of operator overloading in general

because it is hard to get it right—use it at your discretion. Overload

only those operators that will make things very obvious. For example, if

someone who understands the context or domain asks you what’s the

purpose of an operator you’ve provided, then that overloading might

not be a good choice there. When overloading, preserve the expected

semantics. For instance, + must not change any of the operands in the

operation. If an operation must be commutative, symmetric, or transi-

tive, make sure your operator adheres to that.

12. In case you skipped school when they taught complex numbers, they’re useful for

computing complex equations that involve the square root of negative numbers—they

have real and imaginary parts, like your actual income and what you report on your tax

return.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/OperatorOverloading.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=58

SUPPORT OF JAVA 5 LANGUAGE FEATURES 59

3.7 Support of Java 5 Language Features

If you use enums, annotations, or some of the other Java 5 language

features in your applications, you’ll be pleased to find that they work in

Groovy also. This means you can mix Java and Groovy quite fluently.

To refresh your memory, the Java 5 language features are as follows:

• Autoboxing13

• for-each

• enum

• Varargs

• Annotation

• Static import

• Generics

Some of these features (such as autoboxing and varargs) work in Groovy

even with Java 1.4; however, to use most of these Java 5 language

features in Groovy, you’ll need Java 5. In the following sections, I’ll

discuss the extent of the Groovy support for these features.

Autoboxing

Groovy, because of its dynamic typing, supports autoboxing from the

get-go. In fact, Groovy automatically treats all primitives as objects. For

instance, execute the following code:

Download GroovyForJavaEyes/NotInt.groovy

int val = 5

println val.getClass().name

The previous code reports the type, as shown here:

java.lang.Integer

In this code, you created an instance of java.lang.Integer and not a prim-

itive int, even though you specified int. How Groovy handles autoboxing

is a notch better than Java. In Java, autoboxing and unboxing involve

constant casting. Groovy, on the other hand, simply treats them as

objects14—so there’s no repeated casting involved.

13. Autoboxing is not new in Groovy 1.5; it’s a feature supported from the beginning in

Groovy.
14. Don’t let that worry you if you’re calling a Java method that takes a primitive, because

Groovy automatically figures the conversions in.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/NotInt.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=59

SUPPORT OF JAVA 5 LANGUAGE FEATURES 60

for-each

Groovy’s support for looping is different from and superior than the

forms available in Java (see Section 3.1, Ways to Loop, on page 39).

However, if you want to use the traditional for loop (that is, for(int i = 0;

i < 10; i++) {...}), you can use that in Groovy. Or, if you like the simpler

form supported in Java 5, you can do that as well. In Java 5, objects

that implement the Iterable interface can be used in a for-each loop, as

shown here:

Download GroovyForJavaEyes/ForEach.java

// Java code

String[] greetings = {"Hello", "Hi", "Howdy"};

for(String greet : greetings)

{

System.out.println(greet);

}

The previous code written in Groovy looks like this:

Download GroovyForJavaEyes/ForEach.groovy

String[] greetings = ["Hello", "Hi", "Howdy"]

for(String greet : greetings)

{

println greet

}

Groovy insists that you specify the type (String in the previous example)

in the Java style for-each. If you don’t want to specify the type, use the

in keyword instead of a colon (:), as shown here:

Download GroovyForJavaEyes/ForEach.groovy

for(greet in greetings)

{

println greet

}

enum

Groovy provides support for enum, which is the Java 5 feature that

solves problems with enumerations. It’s type safe (you can distinguish

between shirt sizes and days of the week, for example), printable, seri-

alizable, and so on.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ForEach.java
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ForEach.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ForEach.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=60

SUPPORT OF JAVA 5 LANGUAGE FEATURES 61

Here’s an example that defines different sizes of coffee you can order:

Download GroovyForJavaEyes/UsingCoffeeSize.groovy

enum CoffeeSize { SHORT, SMALL, MEDIUM, LARGE, MUG }

def orderCoffee(size)

{

print "Coffee order received for size $size: "

switch(size)

{

case [CoffeeSize.SHORT, CoffeeSize.SMALL]:

println "you're health conscious"

break

case CoffeeSize.MEDIUM..CoffeeSize.LARGE:

println "you gotta be a programmer"

break

case CoffeeSize.MUG:

println "you should try Caffeine IV"

break

}

}

orderCoffee(CoffeeSize.SMALL);

orderCoffee(CoffeeSize.LARGE);

orderCoffee(CoffeeSize.MUG);

print 'Available sizes are: '

for(size in CoffeeSize.values())

{

print "$size "

}

The output from the previous code is as follows:

Coffee order received for size SMALL: you're health conscious

Coffee order received for size LARGE: you gotta be a programmer

Coffee order received for size MUG: you should try Caffeine IV

Available sizes are: SHORT SMALL MEDIUM LARGE MUG

You can use enum values in case statements. Specifically, you can use

a single value, a list of values, or even a range of values.15 You can find

examples of all these flavors in the previous code.

15. Support for range of enum values in case statements was introduced after the release

of Groovy 1.5.4.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/UsingCoffeeSize.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=61

SUPPORT OF JAVA 5 LANGUAGE FEATURES 62

Java 5’s enum allows you to define constructors and methods, and

Groovy supports that too, as shown here:

Download GroovyForJavaEyes/AgileMethodologies.groovy

enum Methodologies

{

Evo(5),

XP(21),

Scrum(30);

final int daysInIteration

Methodologies(days) { daysInIteration = days }

def iterationDetails()

{

println "${this} recommends $daysInIteration days for iteration"

}

}

for(methodology in Methodologies.values())

{

methodology.iterationDetails()

}

The output from the previous code is as follows:

Evo recommends 5 days for iteration

XP recommends 21 days for iteration

Scrum recommends 30 days for iteration

There is a limitation in Groovy, however. Java allows you to refine or

override a method for specific values of an enum. Groovy does not sup-

port that. The following code will result in a compilation error:

Download GroovyForJavaEyes/Activity.groovy

enum WeekendActivity

{

SATURDAY {

String activity() { 'Play' } // ERROR, does not work

},

SUNDAY;

String activity() { 'Relax' }

}

for(day in WeekendActivity.values())

{

println "$day - ${day.activity()}"

}

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/AgileMethodologies.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Activity.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=62

SUPPORT OF JAVA 5 LANGUAGE FEATURES 63

You can expect this feature in Groovy when it supports inner classes.

If you need to override methods for specific enum values right now, you

can use a workaround. Inject the method into the instance you desire

using ExpandoMetaClass,16 as shown here:

Download GroovyForJavaEyes/ActivityWorkaround.groovy

enum WeekendActivity

{

SATURDAY, SUNDAY;

String activity() { 'Relax' }

}

def emc = new ExpandoMetaClass(WeekendActivity)

emc.activity = {-> 'Play'}

emc.initialize()

WeekendActivity.SATURDAY.metaClass = emc

for(day in WeekendActivity.values())

{

println "$day - ${day.activity()}"

}

The output from the previous code is as follows:

SATURDAY - Play

SUNDAY - Relax

varargs

Remember, Java 5 varargs allows you to pass a variable number of argu-

ments to methods, such as the printf() method. To use this feature in

Java, you mark the trailing parameter type of a method with an ellipsis,

as in public static Object max(Object... args). This is syntactic sugar—Java

rolls all the arguments into an array at the time of call.

Groovy supports Java 5 varargs in two different ways. Groovy’s support

for varargs is even available with Java 1.4. In addition to supporting

parameters marked with ..., you can pass variable arguments to meth-

ods that accept an array as a trailing parameter.

16. You’ll learn about method injection and ExpandoMetaClass later in Chapter 14, MOP

Method Injection and Synthesis, on page 202.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ActivityWorkaround.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=63

SUPPORT OF JAVA 5 LANGUAGE FEATURES 64

Let’s look at a Groovy example for these two ways:

Download GroovyForJavaEyes/VarArgs.groovy

def foo1(int a, int... b)

{

println "You passed $a and $b"

}

def foo2(int a, int[] b)

{

println "You passed $a and $b"

}

foo1(1, 2, 3, 4, 5)

foo2(1, 2, 3, 4, 5)

The output from the previous code is as follows:

You passed 1 and [2, 3, 4, 5]

You passed 1 and [2, 3, 4, 5]

You can send either an array or discrete values to methods that accept

varargs or an array as trailing parameters, and Groovy figures out what

to do.

Annotations

Annotations in Java allows you to express metadata, and Java 5 ships

with a few predefined annotations such as @Override, @Deprecated, and

@SuppressWarnings. You can use annotations in Groovy, but you can’t

define new annotations. However, this is not a huge drawback because

application programmers use annotations more often than defining new

ones. You can define annotations using Java until Groovy allows you to

define them.

You use annotations typically for a framework or a tool to use; for exam-

ple, JUnit 4.0 makes use of the @Test annotation. So, if you’re using

frameworks like Hibernate, JPA, Seam, Spring, and so on, you’ll find

Groovy’s current level of support for annotations quite adequate and

helpful.

The Groovy compiler does not, however, use the Java annotations like

@Deprecated and @Override. If you declare a method with @Deprecated

in Groovy, groovyc will compile the code but does not retain the dep-

recation meta information in the bytecode. Similarly, groovyc ignores

@Override.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/VarArgs.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=64

SUPPORT OF JAVA 5 LANGUAGE FEATURES 65

Static Import

Static import in Java allows you to import static methods of a class into

your namespace so you can refer to them without specifying the class

name. For instance, if you place the following:

import static Math.random;

in your Java code, then instead of Math.random(), you can call it like

this:

double val = random();

Static import in Java improves job security. If you define several static

imports or use * to import all static methods of a class, you’re sure to

confuse the heck out of programmers trying to figure out where these

methods come from.

Groovy extends that luxury to you in two forms. First, it implements

static import. You can use it just like in Java. Feel free to lose the

semicolon because that’s optional in Groovy. Second, you can define

aliases in Groovy—for both static methods and class names. To define

an alias, use the as operator in the import statement, as shown here:

import static Math.random as rand

import groovy.lang.ExpandoMetaClass as EMC

double value = rand()

def metaClass = new EMC(Integer)

assert metaClass.getClass().name == 'groovy.lang.ExpandoMetaClass'

In the previous code, you created rand() as an alias for the Math.random()

method. You also created an alias EMC for the ExpandoMetaClass. Now,

you can use rand() and EMC instead of Math.random() and ExpandoMeta-

Class, respectively.

Generics

Groovy is a dynamic language; however, it is optionally typed and sup-

ports Generics. The Groovy compiler does not perform type checks like

the Java compiler does (see Section 3.8, No Compile-Time Type Check-

ing, on page 70). So, code with type violations that’ll be rejected by the

Java compiler are quietly accepted by the Groovy compiler. However,

Groovy’s dynamic typing will interplay here to get your code running, if

possible. Let’s look at an example in which you’ll add a couple of Inte-

gers and a String to an ArrayList of Integer. As you iterate over the elements

of the ArrayList and do some operations on the elements, notice the effect

of Groovy dynamic typing.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=65

SUPPORT OF JAVA 5 LANGUAGE FEATURES 66

Let’s first start with Java code:

Download GroovyForJavaEyes/Generics.java

Line 1 // Java code
- import java.util.ArrayList;
-

- public class Generics
5 {
- public static void main(String[] args)
- {
- ArrayList<Integer> lst = new ArrayList<Integer>();
- lst.add(1);

10 lst.add(2);
- lst.add("hello");
- lst.add(4);
- lst.add(5);
-

15 int total = 0;
- for(Integer i : lst)
- {
- System.out.println(i);
- total += i;

20 }
-

- System.out.println("Total is " + total);
-

- try

25 {
- for(Integer i : lst)
- {
- System.out.println(i.intValue());
- }

30 }
- catch(Exception ex)
- {
- System.out.println(ex);
- }

35 }
- }

When you compile the previous Java code using the Java compiler,

you’ll get a compilation error:

Generics.java:10: cannot find symbol

symbol : method add(java.lang.String)

location: class java.util.ArrayList<java.lang.Integer>

lst.add("hello");

^

1 error

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Generics.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=66

GOTCHAS 67

The Java compiler was not happy with you sending a String to the add()

method since it accepts only Integers (or int, which will be autoboxed to

Integer).

So, copy the previous code to a file named Generics.groovy, and then run

groovy Generics.17 You’ll get the following output:

1

2

hello

4

5

Total is 3hello45

1

2

groovy.lang.MissingMethodException:

No signature of method: java.lang.String.intValue()

is applicable for argument types: () values: {}

How’s that? The iterator (for loop) treated the elements as objects, so

there was no error on line number 16—Groovy took the type informa-

tion more as a suggestion. On line number 19, you ended up appending

“hello” to 3, thanks to Groovy/Java’s treatment of + as a concatenate

operation when an operand is String. The variable total started out being

defined an int, but Groovy decided to ignore the type definition and treat

it as an Object reference. On line number 28, however, when you tried

to invoke the method intValue() on the elements, you got an exception

since String does not have that method. This call would have worked had

you added that method dynamically to String. Groovy supports Generics

and at the same time favors dynamic behavior. It’s quite an interesting

interplay of the two concepts.

3.8 Gotchas

You’ll see a number of nice capabilities of Groovy throughout this book.

Groovy, for its share, also has some “gotchas”—ranging from minor

annoyances to surprises if you’re not expecting them. In the following

sections, I’ll show you a few of them.18

17. Groovy code is always compiled. When you run groovy, it compiles your code in mem-

ory and executes it. To explicitly compile your code, use groovyc (Section 11.2, Running

Groovy, on page 173).
18. Visit http://groovy.codehaus.org/Differences+from+Java for a nice list of Groovy-Java

differences.

http://groovy.codehaus.org/Differences+from+Java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=67

GOTCHAS 68

return Is Not Always Optional

The return statement at the end of a method is optional in Groovy, as

shown in the following code:

Download GroovyForJavaEyes/ReturnGotchas.groovy

def isPalindrome(str) { str == str.reverse() }

println "mom is palindrome? ${isPalindrome('mom')}"

The output from the previous code is as follows:

mom is palindrome? true

That charm runs out if the last statement is a conditional statement:

Download GroovyForJavaEyes/ReturnGotchas.groovy

def isPalindrome2(str)

{

if (str)

{

str == str.reverse()

}

else

{

false

}

}

println "mom is palindrome? ${isPalindrome2('mom')}"

The output from the previous code is as follows:

mom is palindrome? null

In Groovy, if is not an expression; it is a statement, and it evaluates to

null. The problem I just showed you is not confined to if statements—

you’ll run into this for any statement in Groovy. For example, if you

have a try-catch block in your code, examine it to see whether you need

to add a return. The fix for the previous code is as follows:

Download GroovyForJavaEyes/ReturnGotchas.groovy

def isPalindromeOK(str)

{

if (str)

{

return str == str.reverse()

}

else

{

return false

}

}

println "mom is palindrome? ${isPalindromeOK('mom')}"

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ReturnGotchas.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ReturnGotchas.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ReturnGotchas.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=68

GOTCHAS 69

The output is as follows:

mom is palindrome? true

You’ll catch on to return being optional very quickly, but soon after that

you’ll trip over cases where it’s not optional. It has caught me by sur-

prise a number of times. There has been discussions in the Groovy

community to change this behavior, and I hope it happens soon. In the

meantime, though, thoroughly review and test your code (which are

good practices in general, of course).

Groovy’s == Is Equal to Java’s equals

== and equals() were already a source of confusion in Java, and Groovy

adds to the confusion. Groovy maps the == operator to the equals()

method in Java. What if you want to actually perform the reference

equals (the original ==, that is)? You have to use is() in Groovy for that.

I’ll illustrate this difference with the following example:

Download GroovyForJavaEyes/Equals.groovy

str1 = 'hello'

str2 = str1

str3 = new String('hello')

str4 = 'Hello'

println "str1 == str2: ${str1 == str2}"

println "str1 == str3: ${str1 == str3}"

println "str1 == str4: ${str1 == str4}"

println "str1.is(str2): ${str1.is(str2)}"

println "str1.is(str3): ${str1.is(str3)}"

println "str1.is(str4): ${str1.is(str4)}"

This is the output from the previous code:

str1 == str2: true

str1 == str3: true

str1 == str4: false

str1.is(str2): true

str1.is(str3): false

str1.is(str4): false

The observation that Groovy == maps to equals() is only partially true—

that mapping happens only if your class does not implement the Com-

parable interface. If it does, then it maps to the compareTo() method of

your class.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Equals.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=69

GOTCHAS 70

Here is an example that shows this behavior:

Download GroovyForJavaEyes/WhatsEquals.groovy

class A

{

boolean equals(other)

{

println "equals called"

false

}

}

class B implements Comparable

{

boolean equals(other)

{

println "equals called"

}

int compareTo(other)

{

println "compareTo called"

0

}

}

new A() == new A()

new B() == new B()

The output from the previous code shows that the operator picks the

compareTo() method over the equals() method for classes that implement

the Comparable interface. Here’s the output:

equals called

compareTo called

Use caution when comparing objects—first ask yourself whether you’re

comparing references or values, and then ask yourself whether you’re

using the correct operator.

No Compile-Time Type Checking

Groovy is optionally typed; however, the Groovy compiler, groovc, does

not perform full type checking. Instead, it performs casting when it

encounters type definitions. It also checks for imports to ensure the

classes you use exist. Consider the following code:

Download GroovyForJavaEyes/NoTypeCheck.groovy

Integer val = 4

val = 'hello'

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/WhatsEquals.groovy
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/NoTypeCheck.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=70

GOTCHAS 71

The code will compile with no errors. When you try to run the Java

bytecode created, you will receive a GroovyCastException exception. The

output from the previous code is shown here:

org.codehaus.groovy.runtime.typehandling.GroovyCastException:

Cannot cast object 'hello' with class 'java.lang.String'

to class 'java.lang.Integer'

The Groovy compiler, instead of verifying the type, simply cast it and

left it to the runtime to deal with. You can verify this by digging into the

bytecode generated (you can use the javap -c ClassFileName command to

peek at the human-readable form of the bytecode):

...

58: ldc #71; //String hello

60: getstatic #74; //Field class$java$lang$Integer:Ljava/lang/Class;

63: ifnonnull 78

66: ldc #76; //String java.lang.Integer

68: invokestatic #21; //Method class$:(Ljava/lang/String;)L...

71: dup

72: putstatic #74; //Field class$java$lang$Integer:Ljava/lang/Class;

75: goto 81

78: getstatic #74; //Field class$java$lang$Integer:Ljava/lang/Class;

81: invokestatic #80; //Method org/codehaus/groovy/runtime/Scri...

84: checkcast #65; //class java/lang/Integer

87: dup

88: astore_3

89: aload_3

90: areturn

...

So, in Groovy, x = y is semantically equivalent to x = (ClassOfX)(y).19

Similarly, if you call a method that does not exist (such as the method

call to the nonexistent method blah in the following example), you will

not get any compilation error:

Download GroovyForJavaEyes/NoTypeCheck.groovy

Integer val = 4

val.blah()

You will get a MissingMethodException at runtime, as shown next. This is

actually an advantage, as you’ll see in Chapter 14, MOP Method Injection

and Synthesis, on page 202. Between the time the code is compiled and

before it is executed, you have the ability to inject missing methods

dynamically.

19. Defining an int in Groovy, for example, actually creates an instance of Integer—see

Section 4.6, Types in Groovy, on page 86.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/NoTypeCheck.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=71

GOTCHAS 72

groovy.lang.MissingMethodException:

No signature of method: java.lang.Integer.blah() is applicable

for argument types: () values: {}

The Groovy compiler may appear weak;20 however, this is necessary for

the dynamic and metaprogramming strengths of Groovy.

Be Aware of New Keywords

def and in are examples of new keywords in Groovy. def is used to define

methods, properties, and local variables. in is used in for loops to specify

the range for looping as in for(i in 1..10).

If you use these keywords as variable names or method names, it may

lead to problems. This may especially be critical when taking some

existing Java code and using it as Groovy code.

It is also not a smart idea to define a variable named it. Although Groovy

will not complain, if you have a field with that name and you use it

within a closure, the name refers to the closure parameter and not a

field in your class—hiding variables is not going to help you pay your

technical debt.21

No Inner Classes

Groovy does not support inner classes. This is only a minor annoyance

if you take existing Java code and try to run it as a Groovy script. If

you are writing fresh Groovy code, you can take advantage of closures

in Groovy. For more information, see Chapter 5, Using Closures, on

page 92.

No Code Block

The following code is valid Java code:

Download GroovyForJavaEyes/Block.java

// Java code

public void method()

{

System.out.println("in method1");

{

System.out.println("in block");

}

}

20. http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic

21. http://martinfowler.com/bliki/TechnicalDebt.html

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/Block.java
http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic
http://martinfowler.com/bliki/TechnicalDebt.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=72

GOTCHAS 73

Code blocks in Java define a new scope. Groovy gets confused at this

code, however. It thinks you’re defining a closure and complains. You

can’t have arbitrary code blocks like this within methods in Groovy.

The Semicolon (;) Is Almost Optional

Programmers of C-derived languages who have subjected their pinky

fingers to years of abuse will find relief in Groovy. You don’t have to

place a semicolon (;) at the end of statements. If you want to place

multiple statements on the same line, then place a semicolon to sep-

arate the statements. Losing semicolons is actually good—it will help

you when creating DSLs. However, there’s at least one place where the

semicolon is not optional. Take a look at the following code:

Download GroovyForJavaEyes/SemiColon.groovy

class Semi

{

def val = 3

{

println "Instance Initializer called..."

}

}

println new Semi()

You intend the code block to be an instance initializer for your class.

However, Groovy gets confused, treats the instance initializer as a clo-

sure, and gives the following error:

Caught: groovy.lang.MissingMethodException:

No signature of method: java.lang.Integer.call()

is applicable for argument types: (Semi$_closure1)

values: {Semi$_closure1@be513c}

at Semi.<init>(SemiColon.groovy:3)

at SemiColon.run(SemiColon.groovy:10)

at SemiColon.main(SemiColon.groovy)

Replace def val = 3 with def val = 3;, and the code will run fine. Now

Groovy recognizes the block of code as instance initializer, not attached

to the property definition.

If you have a static initializer instead of instance initializer, you won’t

have this problem, however. So if you have a reason to use both static

and instance initializers, you can avoid the semicolon if you place the

static initializer before the instance initializer.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/SemiColon.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=73

GOTCHAS 74

Different Syntax for Creating Primitive Arrays

In Groovy, if you want to create a primitive array, you can’t use the

notation you’re used to using in Java.

Suppose you want to create an array of integer in Java. You would write

the following:

Download GroovyForJavaEyes/ArrayInJava.java

int[] arr = new int[] {1, 2, 3, 4, 5};

In Groovy, that will not work. In fact, you will get a compilation error.

The Groovy way to define a primitive array of int is as follows:

Download GroovyForJavaEyes/ArrayInGroovy.groovy

int[] arr = [1, 2, 3, 4, 5]

println arr

println "class is " + arr.getClass().name

The output from the previous code is shown next. The type of the

instance created is [I, which is the JVM representation for int[].

[1, 2, 3, 4, 5]

class is [I

You’ve come a long way in this chapter. You know how to write classes

in Groovy, you’ve picked up some Groovy idioms, and you know some

Groovy ways to writing code. You also know that you can fall back on

Java syntax if necessary. You don’t have to wait to finish the rest of this

book to start experimenting and playing with Groovy. However, there is

a lot in store for you ahead. I mentioned dynamic typing and optional

typing a few times, so in the next chapter I will discuss those topics and

show how you can take advantage of them in Groovy.

http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ArrayInJava.java
http://media.pragprog.com/titles/vslg/code/GroovyForJavaEyes/ArrayInGroovy.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=74

Chapter 4

Dynamic Typing
As a Java programmer, you’re used to static typing. Your Java com-

piler acts as a first level of defense—it checks to see whether the types

you’re using are the ones expected. And that’s not your only defense;

your second level of defense is the Java runtime. Dynamic typing allows

you to skip that first part. It does not make your code unsafe. You’re

forgoing static type checking in return for a greater benefit. It’s like you

were offered a tax deduction—no thanks, you’re going for a tax credit.

In this chapter, I will walk you through the benefits of Groovy’s dynamic

typing. Your fingers will thank you because dynamic typing allows you

to type less. And you’ll also notice that it takes less time and effort to

create extensible code. You’ll find that relying on dynamic typing takes

more discipline, but it’s a small pain for a greater gain.

4.1 Typing in Java

As Java programmers we’ve all come to rely on the “safety” of compile-

time type checking.

Several years ago, when I was young and stupid, I wrote my first C

program that looked something like this:

#include<stdio.h>

int main(int argc, char* argv)

{

int value;

scanf("%d", value);

/*...*/

}

It compiled with no errors. When I ran it, after accepting an integer

input, it crashed with a segmentation fault.

TYPING IN JAVA 76

As a novice C programmer, I was crestfallen.1 That early experience

showed me that just because the compiler produced a binary (or byte-

code in Java), it does not mean that the code is correct or will even run.

As I came to realize, and as I’m sure you have too, you need to take the

time to test the code to make sure it actually meets your expectations.

The safety offered by the Java compiler is not far from my previous

experience. I am not discounting the usefulness of the compiler; I am

simply arguing that depending heavily on the type checking it offers is

rather naive. Java’s support for typing at compile time goes only so far—

for example, it does not fully help you when working with collections.

Consider the following pre-Java 5 code:

Download TypesAndTyping/UsingList.java

Line 1 ArrayList lst1 = new ArrayList();
-

- lst1.add("hello");
-

5 int size = ((String)(lst1.get(0))).length();

That casting around the call to the get() method on line number 5 is

overwhelming. I am sure you’ve asked several times why it can’t be as

simple as lst1.get(0).length(). Generics, in Java 5, makes that possible:

Download TypesAndTyping/UsingList.java

ArrayList<String> lst2 = new ArrayList<String>();

lst2.add("better?");

int size = lst2.get(0).length();

The Generics concept is interesting—I’ve appreciated, for example, the

templates in C++ and the implementation of Generics in .NET. Unfortu-

nately, because of the desire to keep backward compatibility, Java had

to use so-called type erasure. As a result, Generics in Java do not offer

real type safety,2 as you’ll see in the following example:

Download TypesAndTyping/UsingList.java

Line 1 ArrayList<String> lst3 = new ArrayList<String>();
-

- //lst3.add(1); // Will result in a compilation error if uncommented
-

5 ArrayList lst = lst3; // May happen during passing parameters in method calls
- lst.add(1);
- int size = lst3.get(0).length();

1. I had forgotten a silly & in front of the variable value in the call to scanf().
2. Refer to the article “Good, bad, and ugly of Java Generics“ in Appendix A, on page 291.

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/UsingList.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/UsingList.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/UsingList.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=76

TYPING IN JAVA 77

The previous code—depending on the version of compiler you’re using—

at best will give you a warning. If you run the generated bytecode,

you’ll get a ClassCastException because you’re trying to treat an Integer

as a String. Furthermore, using Generics did not eliminate casting. For

example, the statement on line number 7 in the previous code shifted

the type casting from the source code to the bytecode. If you examine

the generated bytecode using javap, you’ll see a call to checkcast. For

the amount of complexity involved and the steep learning curve it has,

you’d probably expect Generics to offer more than mere type inference

and shifting of the cast to bytecode.

Let’s look at typing from a different angle. Suppose you have a class

Car with a year and an Engine, and you want to implement the ability

to clone objects of this class.3 To do that, you implement the Cloneable

interface and provide a public clone() method. Object’s clone() can make

a shallow copy of the object. However, you want different instances of

the Car to have different Engines. So, you clone the Car using the base

method but tweak it a little to have its own Engine. The Java code for

this is as follows:

Download TypesAndTyping/Car.java

//Java code

public Object clone()

{

try

{

Car cloned = (Car) super.clone();

cloned.engine = (Engine) engine.clone();

return cloned;

}

catch(CloneNotSupportedException ex)

{

return null; // Will not happen, but we need to please the compiler

}

That code is noisy—first, the compiler insists that you must handle

CloneNotSupportedException, right in the very method that’s implement-

ing the clone. Second, when you’re calling super.clone() within your Car

class’s instance method, you know you’re asking for another Car. Yet,

your compiler is adamant that you must cast the result of that call. It’s

the same with the next statement where you’re cloning the Engine. Fur-

thermore, when you’re ready to actually call the clone() method on an

instance of Car, you need to cast again to receive the result of that call

3. We’ll ignore deeper issues with cloning in Java—see my article “Why Copying an

Object Is a Terrible Thing to Do” in Appendix A, on page 291.

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/Car.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=77

DYNAMIC TYPING 78

into a Car reference. These are examples where the static type checking

amounts to mere annoyance and lowers your productivity. Good static

type checking should work like a good government—do the essential

things, and stay out of your way. However, the Java compiler is in your

face most of the time.

Compile-time type checking has its values. However, today’s IDEs have

made developing code and running the tests so much easier that I often

write code and run my tests, leaving it to the IDE to save the relevant

files that have been edited and to compile the code as necessary. When

my attempt to run the tests fails, I address those issues. Thus, while

repeating my fast edit-run-test cycles, I tend not to care so much to

distinguish between compilation errors, runtime errors, and failures of

the tests. The focus is on getting the code working and having all the

tests pass at all time.

4.2 Dynamic Typing

Dynamic typing relaxes the typing requirements. Basically, you let the

language figure out the type based on the context. A number of dynamic

languages are dynamically typed, but some respectable dynamic lan-

guages do provide static typing.

What is the advantage of dynamic typing? Is it worth forgoing the ben-

efit of type verification or confirmation at compile-time or code-editing

time? Dynamic typing provides two main advantages, and I contend

that the benefits outweigh the cost.

You can write calls to methods on objects without nailing down the

details at that moment. During runtime, objects dynamically respond to

methods or messages. You can certainly achieve this to a certain extent

using polymorphism in statically typed languages. However, most stat-

ically typed languages tie inheritance with polymorphism. They force

you to conform to a structure rather than to true behavior. True poly-

morphism does not care about types—send a message to an object, and

at runtime it figures out the appropriate implementation to use. So,

dynamic typing can help you achieve a greater degree of polymorphism

than traditional static languages allow.

The second advantage is you’re not fighting the compiler doing trivial

casting, like the examples you saw in Section 4.1, Typing in Java, on

page 75.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=78

DYNAMIC TYPING != WEAK TYPING 79

You feel like you are working with a language that is intelligent and

follows along with you. You’re more productive partly because of less

ceremony.

Working with static typing feels like having a nagging in-law standing

next to you as you work—your every move being scrutinized. It does not

give you the full flexibility to defer some implementation to a later time,

before the code is actually executed. Working with dynamic typing feels

like having an all-too-kind grandfather standing next to you as you

work—letting you experiment, figure things out, and be creative but

still there to help you when you really need it.

The first advantage—true realization of polymorphism—significantly

alters the way you design your application for the better, as you’ll see

in Section 4.4, Design by Capability, on the next page.

4.3 Dynamic Typing != Weak Typing

In a statically-typed language, you specify the types of variables, refer-

ences, and so on, at compile time—and the compiler insists that you

do. Take C/C++, for example. You have to specify the variable type as

a primitive type like int, double, ..., or a specific class type. However,

what if you cast the variable to a wrong type? Will the compiler stop

you? No. What’s the fate of the program when you run? It depends.

If you are lucky, the program will crash. If not, it may wait until that

important demo to crash or misbehave. Depending on how the memory

is laid out, whether your call is polymorphic, and how the v-table4 is

organized, things may behave in quite unpredictable ways. If you turn

the dial up, you may hear the compiler laugh for relying on the type-

safety it pretends to provide. This is an example of static typing with

weak typing at runtime.

In Figure 4.1, on the following page, I classify some common languages

based on static vs. dynamic typing and strong vs. weak typing.

Java is also a statically typed language, but it’s strongly typed. The

compiler checks for the types, but if you’re coercing to a wrong type,

the runtime is there to catch you.

4. Some languages like C++ maintain a method dispatch table with addresses of poly-

morphic methods ([ES90]).

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=79

DESIGN BY CAPABILITY 80

Dynamic Static

Strong

Weak

Ruby/Groovy Java/C#

C/C++JavaScript/Perl

Figure 4.1: Classification of select languages: static vs. dynamic and

strong vs. weak typing

Dynamically typed languages such as Groovy don’t perform type check-

ing at code-editing time or compile time. However, if you mistreat an

object as a wrong type, you’ll hear about it in no uncertain terms at

runtime. You postpone the actual verification until runtime; this allows

you to modify the structure of your program between the time you

write/compile the code and the time it actually executes. These lan-

guages show us that dynamic typing does not mean weak typing.

4.4 Design by Capability

As Java programmers we rely heavily on interfaces. We value “design by

contract,” [Mey97] where interfaces define contracts for communication

and classes implement and abide by these contracts.

In business, contracts are good. They allow us to agree upon a certain

expectations to be fulfilled. At the same time, you don’t want the con-

tract to be too restrictive, strict, and controlling. You want the flexibility

to meet and exceed the expectations in acceptable ways.

Software contracts must be similar. Interface-based programming, al-

though very powerful, tends to be restrictive beyond a certain point.

Let’s consider an example that highlights the differences between using

static typing and dynamic typing.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=80

DESIGN BY CAPABILITY 81

Using Static Typing

Say I need to move some heavy stuff. So, I ask a willing and able man

to help me out. In Java, this would look like the following code:

Download TypesAndTyping/TakeHelp.java

public void takeHelp(Man man)

{

//...

man.helpMoveThings();

//...

}

Because of strong typing, I ignored help from a willing and able woman

nearby. Let me extend this so I can seek the help of either a man or

a woman. I’ll do that by creating a Human abstract class with the help-

MoveThings() method. Man and Woman will provide their own implemen-

tations for this method:

Download TypesAndTyping/Human.java

// Java code

public abstract class Human

{

public abstract void helpMoveThings();

//...

}

Here’s code that takes the help of a Human:

Download TypesAndTyping/TakeHelp.java

public void takeHelp(Human human)

{

//...

human.helpMoveThings();

//...

}

OK, now any human can help me move things. However, if I’m a forest

officer in the Serengeti, I failed to take advantage of that nice elephant

next to me. I depend on Human, and an elephant does not (want to)

conform to that contract. It’s time to extend again, this time with an

interface Helper with the method helpMoveThings():

Download TypesAndTyping/Helper.java

// Java code

public interface Helper

{

public void helpMoveThings();

}

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/Human.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/Helper.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=81

DESIGN BY CAPABILITY 82

Then Human, Elephant, and any other helpers implement Helper. I now

depend on Helper and can accept help from those implementing that

interface:

Download TypesAndTyping/TakeHelp.java

public void takeHelp(Helper helper)

{

//...

helper.helpMoveThings();

//...

}

Extending took some effort so far. Using a wide variety of objects meant

creating interfaces and modifying the code to depend on it.

Using Dynamic Typing

Let’s revisit the “take help” example using the dynamic typing capabili-

ties of Groovy:

Download TypesAndTyping/TakeHelp.groovy

def takeHelp(helper)

{

//...

helper.helpMoveThings()

//...

}

The takeHelp() method accepts a helper but does not specify its type—it

defaults to an Object. I call, among other things, the helpMoveThings()

method on it. This is “design by capability.” Instead of asking the helper

to conform to some explicit interface, I am making use of the object’s

capability—relying upon an implicit interface. This is called duck typ-

ing,5 which is based on the sentiment that “if it walks like a duck and

quacks like a duck, it must be a duck.”

Classes that care to have that capability simply implement the method;

there’s no need to extend or implement anything. The result is low cer-

emony and high productivity. Now, if a machine has that capability, I

can use it without any change to my code. Let’s look at a few classes

with the capability I want.

5. http://c2.com/cgi/wiki?DuckTyping

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.groovy
http://c2.com/cgi/wiki?DuckTyping
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=82

DESIGN BY CAPABILITY 83

Download TypesAndTyping/TakeHelp.groovy

class Man

{

void helpMoveThings()

{

//...

println "Man's helping"

}

//...

}

class Woman

{

void helpMoveThings()

{

//...

println "Woman's helping"

}

//...

}

class Elephant

{

void helpMoveThings()

{

//...

println "Elephant's helping"

}

void eatSugarcane()

{

//...

println "I love sugarcanes..."

}

//...

}

Here is an example of calling the takeHelp() method:

Download TypesAndTyping/TakeHelp.groovy

takeHelp(new Man())

takeHelp(new Woman())

takeHelp(new Elephant())

The output from the previous code is as follows:

Man's helping

Woman's helping

Elephant's helping

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.groovy
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=83

DESIGN BY CAPABILITY 84

Dynamic Typing Needs Discipline

See how simple, elegant, and flexible your code is when you take advan-

tage of dynamic typing? But, is this risky business?

• You might mistype the method name when creating one of the

helpers.

• Without the type information, how do you know what to send to

your method?

• What if you send a nonhelper (an object that’s not capable of mov-

ing stuff) to the method?

These are good concerns, but don’t let those turn into fear. Instead,

take steps to address these effectively. In this section, I highlight some

ways to address each of these concerns.

If you’re like me, you will make several mistakes typing. Also, our mind

constantly fools us; we tend to see what we want to see instead of what’s

really there. So, ensure that the method names have proper case and

take proper parameters. The compiler in a static language does this for

you. In a dynamically typed language, either you don’t have the com-

piler or the compiler does not check for these. You’ll need to rely on

unit testing (see Section 16.2, Unit Testing Java and Groovy Code, on

page 236) to ensure that you have things right. If you write unit tests

only for this purpose, then, yes, I agree that it is an overhead—a rather

outlandish ceremony. However, just because a compiler produces byte-

code does not mean the code is right either. You still need to verify that

it meets your expectations—not just doing what you typed, but doing

what you really meant. So, unit testing is a practice that I’ve come to

rely upon quite extensively when I program with static languages. The

lack of compiler support (or the lack of compiler) to verify these doesn’t

bother me so much. Unit testing is a good practice, and dynamic typing

requires you to follow that with greater discipline. Programming with

dynamic typing without having the discipline of unit testing is playing

with wildfire.

To a certain extent, typing helps you figure out what objects or values

you need to send to a method. But that is only half the story. Knowing

that you must send a double value to a method is hardly enough in

practice.6 Again, two things that can help you a great deal here are

disciplined unit testing and following good naming conventions.

6. Unless you want to end up on the news for crashing orbiters; see http://www.cnn.com/

TECH/space/9909/30/mars.metric.02/.

http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=84

DESIGN BY CAPABILITY 85

If a method takes distance as a parameter, rather than naming the

variable d, dist, or even distance, you can name them to be very expres-

sive like distanceInMiles. Sure, you can create a type DistanceInMiles, but

you don’t need that much ceremony if you follow good conventions and

testing practices.

Lastly, what about conformance—what if someone sends you an object

that does not support the method you’re expecting? There are two ways

to look at it. You can assume that the callers take the responsibility to

make sure they send you only what’s valid. If they send you an invalid

object, your code will fail, and an exception is thrown their way. Even

in compiled code you have to deal with violation of preconditions, so

this is along the same lines but broader. Alternately, in special cases,

where you want to deal with some alternative or optional behavior, you

may ask the object whether it’s capable of doing what you’re expecting.

Groovy’s respondsTo() method can help here (see Section 12.2, Querying

Methods and Properties, on page 190). Assume I own a sugarcane farm

and want to share some with my helper, but not all helpers may eat raw

sugarcanes. I can ask whether my helper likes sugarcanes, as shown

in the following example:

Download TypesAndTyping/TakeHelp.groovy

def takeHelpAndReward(helper)

{

//...

helper.helpMoveThings()

if (helper.metaClass.respondsTo(helper, 'eatSugarcane'))

{

helper.eatSugarcane()

}

//...

}

takeHelpAndReward(new Man())

takeHelpAndReward(new Woman())

takeHelpAndReward(new Elephant())

I’m checking with the helper whether sugarcanes are OK, and if so, I

share some. The output from the previous code is as follows:

Man's helping

Woman's helping

Elephant's helping

I love sugarcanes...

Design by capability with a proper mix of discipline provides you with

the flexibility for extensibility and makes you more productive.

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/TakeHelp.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=85

OPTIONAL TYPING 86

4.5 Optional Typing

Groovy is dynamically typed but is also optionally typed; you can adjust

the dial of typing all the way to the left where you do not specify any

type and let Groovy figure things out, or you can move the dial all the

way to the right where you will precisely specify the type of variables or

references you use.

Remember that Groovy is a language that runs on top of the JVM.

Optional typing helps integrate your Groovy code with Java libraries,

frameworks, and tools. Sometimes you will find that Groovy’s dynamic

mapping of type does not match what these libraries or tools expect.

Such a situation is not a showstopper in Groovy—you can switch read-

ily and specify the type information to get moving. Optional typing is

also useful in other situations like needing type information to gener-

ate database schema or to create validators in GORM/Grails.

As an example, consider writing a JUnit test using Groovy (see Sec-

tion 16.2, Unit Testing Java and Groovy Code, on page 236). In Groovy,

you may define methods using the def keyword. This, however, defines

a method that returns Object. JUnit, on the other hand, expects test

methods to be void. You will get an error if you try to run a test defined

using def. Instead, you will have to define the method as a void method

to satisfy JUnit. The optional typing of Groovy comes in handy here.

Looking at Figure 4.1, on page 80, you may ask, if Groovy is option-

ally typed, why didn’t I place Groovy in the middle between static and

dynamic typing? That’s because the Groovy compiler—groovyc—does

not really do full type checking (see Section 3.8, No Compile-Time Type

Checking, on page 70 for details). If you write X obj = 2, where X is a class,

it simply places a cast like X obj = (X) 2 and lets the runtime dynamically

determine whether that is valid. So, even though Groovy allows typing,

it’s still dynamically typed.

4.6 Types in Groovy

Since Groovy supports optional typing, you can write code quite flexi-

bly, as shown here:

Download TypesAndTyping/GroovyTypes.groovy

def x = 1

println x

int y = 1

println y

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/GroovyTypes.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=86

MULTIMETHODS 87

Declaring the type as int is optional. However, there is a hidden surprise

in the previous code. To see it, ask Groovy the type of variable y:

Download TypesAndTyping/GroovyTypes.groovy

println x.getClass().name

println y.getClass().name

println 1.1.getClass().name

The output from the previous code is as follows:

java.lang.Integer

java.lang.Integer

java.math.BigDecimal

Groovy reports that both the variables x and y are referring to objects of

type Integer, even after you defined y as int. Much like Smalltalk and

Ruby, Groovy has no primitives—only objects. Also, Groovy treated

1.1 as an instance of java.math.BigDecimal—Groovy computations have

higher precision by default, and Groovy readily supports the java.math

classes so you don’t have to do special things to get more accurate

results.7

The fact that everything is an object allows you to call methods easily on

just about anything. So, as a trivial example, you can do the following:

Download TypesAndTyping/GroovyTypes.groovy

println 1.byteValue()

You may wonder why in the world anyone would want to call that

method on a number. Instead, understand that you can call methods

on numbers as shown. This paves the way to easily create DSLs in

Groovy and write code like this:

5.days.ago.at 4:30

25.dollars.and.15.cents

You’ll learn how to write code like this in Section 18.9, Categories and

DSLs, on page 286.

4.7 Multimethods

Dynamic typing and dynamic languages change the behavior and hence

your understanding of how objects respond to method calls.

7. http://groovy.codehaus.org/Groovy+Math

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/GroovyTypes.groovy
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/GroovyTypes.groovy
http://groovy.codehaus.org/Groovy+Math
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=87

MULTIMETHODS 88

Take the following Java example:

Download TypesAndTyping/Employee.java

// Java code

public class Employee

{

public void raise(Number amount)

{

System.out.println("Employee got raise");

}

}

The Employee class’s raise() method takes a Number and simply reports

that it was called. Now look at the Executive class:

Download TypesAndTyping/Executive.java

// Java code

public class Executive extends Employee

{

public void raise(Number amount)

{

System.out.println("Executive got raise");

}

public void raise(java.math.BigDecimal amount)

{

System.out.println("Executive got outlandish raise");

}

}

The executive has overloaded raise() methods—what else do you expect?

The version that takes Number reports its call; the version that takes

BigNumber announces the outlandish raise.

Finally, here’s Java code that puts these to use:

Download TypesAndTyping/GiveRaiseJava.java

// Java code

import java.math.BigDecimal;

public class GiveRaiseJava

{

public static void giveRaise(Employee employee)

{

employee.raise(new BigDecimal(10000.00));

}

public static void main(String[] args)

{

giveRaise(new Employee());

giveRaise(new Executive());

}

}

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/Employee.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/Executive.java
http://media.pragprog.com/titles/vslg/code/TypesAndTyping/GiveRaiseJava.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=88

MULTIMETHODS 89

You create an Employee and an Executive and send them to the same

giveRaise() method, which then calls the raise() method on these objects.

The output from the previous code, shown next, is quite expected in

Java:

Employee got raise

Executive got raise

The raise() method in Employee is polymorphic, meaning at runtime the

actual method invoked depends not on the type of the target reference

but on the type of the object to which it refers. There’s one restric-

tion, however. The method called at runtime has to take Number as a

parameter because that’s what Employee—the base—has defined. So,

the compiler treats the instance of BigNumber as Number.

That’s a standard, everyday operation in Java. Not a big deal, right? All

that changes when it comes to the dynamic nature of Groovy. Groovy

knows that “premature optimization is the root of all evil.”

So, when you call the raise() method in Groovy, it does not go through

the previous sequence as in Java. Instead, it walks up to the object and

asks—figuratively speaking, that is—“Hey, do you have a raise() method

that takes a java.math.BigDecimal()?”8 An Employee would say, “No, but

you can give it to me as a Number.” On the other hand, an Executive

does have a raise() that takes a BigDecimal and so the call is routed to

that implementation. Here’s the code that illustrates this behavior—

you’re still using Java classes for Employee and Executive from earlier,

so there’s no change to those:

Download TypesAndTyping/GiveRaise.groovy

void giveRaise(Employee employee)

{

employee.raise(new BigDecimal(10000.00))

// same as

//employee.raise(10000.00)

}

giveRaise new Employee()

giveRaise new Executive()

The output from the previous code is as follows:

Employee got raise

Executive got outlandish raise

8. Remember, Groovy treats primitives as objects. I could’ve sent it a double, and Groovy

would’ve treated it as BigDecimal.

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/GiveRaise.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=89

MULTIMETHODS 90

You see how dynamic Groovy is? If you have overloaded methods in

your class, Groovy smartly picks the correct implementation not only

based on the target object—the object on which the method is invoked—

but also based on the parameter(s) you send to the call. Since the

method dispatching is based on multiple objects—the target plus the

parameters—this is called multiple dispatch or multimethods.

Multimethods fix a problem in Java.9 Take a look at the following Java

code that uses Generics. lst refers to an instance of ArrayList<String>, and

col, which is of type Collection<String>, is referring to the same instance.

You added three elements to lst and removed one. The remove got rid

of the first element in the list. Now, you intend the call col.remove(0) to

remove another element. However, the remove() method in the Collection

interface expects an Object, so Java boxes the 0 into an Integer. And

since an instance of Integer is not part of the list, it did not remove

anything.

Download TypesAndTyping/UsingCollection.java

//Java code

import java.util.*;

public class UsingCollection

{

public static void main(String[] args)

{

ArrayList<String> lst = new ArrayList<String>();

Collection<String> col = lst;

lst.add("one");

lst.add("two");

lst.add("three");

lst.remove(0);

col.remove(0);

System.out.println("Added three items, remove two, so 1 item to remain.");

System.out.println("Number of elements is: " + lst.size());

System.out.println("Number of elements is: " + col.size());

}

}

The output from the previous code is as follows:

Added three items, remove two, so 1 item to remain.

Number of elements is: 2

Number of elements is: 2

Now, don’t make any change to the previous code. Simply copy and

paste it as is into a file named UsingCollection.groovy, and run groovy

9. Thanks to Neal Ford for this Java example.

http://media.pragprog.com/titles/vslg/code/TypesAndTyping/UsingCollection.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=90

DYNAMIC: TO BE OR NOT TO BE? 91

UsingCollection. The output from the Groovy execution of the previous

code is as follows:

Added three items, remove two, so 1 item to remain.

Number of elements is: 1

Number of elements is: 1

Groovy’s dynamic and multimethod capability nicely handles this case.

At runtime it figures you meant to remove the first element and did not

go into the unnecessary trouble of boxing that would lead to incorrect

behavior here.

4.8 Dynamic: To Be or Not to Be?

Since Groovy is a dynamic language that supports optional typing, a

good question to ask is, should you specify the type or rely on dynamic

typing?

There are no real rules in this area, but you can certainly develop some

preferences.

When programming in Groovy, I generally lean toward leaving out the

type and instead making the parameter/variable names very expres-

sive. Not specifying the type has the added advantages of benefiting

from duck typing (Section 4.4, Design by Capability, on page 80) and

from the ease of applying mocks for testing (Section 16.2, Unit Testing

Java and Groovy Code, on page 236).

I opt to specify the type if I am forced to (such as when JUnit requires

test methods to be void) or if that provides a significant benefit (such as

when mapping types to databases in GORM).

If you’re developing an API that’s intended for use by someone using

a static language, then I suggest you specify the parameter types for

methods in the statically typed client-facing API.

In this chapter, you journeyed through the typing-related issues, bene-

fits, and features of Groovy. You saw how the dynamic typing of Groovy

allows you to make typing implicit when you don’t care to specify. At the

same time, you saw how easily the optional typing allows you to reach

for the type declaration where you need it. You learned that method

dispatching is quite different and powerful in Groovy, how to enjoy true

polymorphism, and also how take advantage of the design by capabil-

ity. In the next chapter, I’ll take you into one of the most interesting

features in Groovy—closures.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=91

Chapter 5

Using Closures
Closures1 are one of the Groovy features you’ll use the most. You can

pass closures to methods and invoke them. In fact, one of the biggest

contributions of the GDK is extending the JDK with methods that take

closures. Closures provide you with the power of function pointers, but

with the elegance of objects and the ease of duck typing. Once you get

the hang of using closures, you’ll be eager to put them to good use in

your own projects. So, in this chapter, we’ll start with what closures

are, why you should care, and how to use them. Along the way, you’ll

learn some inner mechanics of closures in Groovy and quickly pick up

some advanced uses of closures.

5.1 Closures

Suppose you have a function that traverses a collection of values or

objects. You may want to perform different operations on the selected

values. You can fetch the selected values as an array and then oper-

ate on them. Alternately, you can work on them as they’re selected—

closures help you do that.

The Traditional Way

Let’s consider a simple example—assume you want to find the sum of

even values from 1 to a certain number n.

1. You may view Groovy closures more as lambda expressions, but Groovy uses a relaxed

definition of the term closures. See http://groovy.codehaus.org/Closures+-+Formal+Definition for

more information.

http://groovy.codehaus.org/Closures+-+Formal+Definition

CLOSURES 93

Here is the traditional approach:

Download UsingClosures/UsingEvenNumbers.groovy

def sum(n)

{

total = 0

for(int i = 2; i <= n; i += 2)

{

total += i

}

total

}

println "Sum of even numbers from 1 to 10 is ${sum(10)}"

In the method sum(), you’re running a for loop that iterates over even

numbers and sums them. Now, suppose instead that you want to find

the product of even numbers from 1 to n.

Download UsingClosures/UsingEvenNumbers.groovy

def product(n)

{

prod = 1

for(int i = 2; i <= n; i += 2)

{

prod *= i

}

prod

}

println "Product of even numbers from 1 to 10 is ${product(10)}"

You again iterate over even numbers, this time computing their prod-

uct. Now, what if you want to get a collection of squares of these values?

The code that returns an array of squared values might look like the

following:

Download UsingClosures/UsingEvenNumbers.groovy

def sqr(n)

{

squared = []

for(int i = 2; i <= n; i += 2)

{

squared << i ** 2

}

squared

}

http://media.pragprog.com/titles/vslg/code/UsingClosures/UsingEvenNumbers.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/UsingEvenNumbers.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/UsingEvenNumbers.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=93

CLOSURES 94

println "Squares of even numbers from 1 to 10 is ${sqr(10)}"

The code that does the looping is the same (and duplicated) in each of

the previous code examples. What’s different is the part dealing with the

sum, product, or squares. If you want to perform some other operation

over the even numbers, you’d be duplicating the code that traverses the

numbers. Let’s find ways to remove that duplication.

The Groovy Way

Let’s start with a function that allows you to simply pick even numbers.

Once the function picks a number, it immediately sends it to a code

block for processing. Let the code block simply print that number for

now:

Download UsingClosures/PickEven.groovy

def pickEven(n, block)

{

for(int i = 2; i <= n; i += 2)

{

block(i)

}

}

pickEven(10, { println it })

The pickEven()2 method is iterating over values (like before), but this

time, it yields or sends the value over to a block of code—or closure.

The variable block holds a reference to a closure. Much like the way you

can pass objects around, you can pass closures around. The variable

name does not have to be named block; it can be any legal variable

name. When calling the method pickEven(), you can now send a code

block as shown in the earlier code. The block of code (the code within

{}) is passed for the parameter block, like the value 10 for the variable

n. In Groovy, you can pass as many closures as you want. So, the

first, third, and last arguments for a method call, for example, may be

closures. If a closure is the last argument, however, there is an elegant

syntax, as shown here:

Download UsingClosures/PickEven.groovy

pickEven(10) { println it }

2. pickEven() is a higher-order function—a function that takes functions as arguments or

returns a function as a result (http://c2.com/cgi/wiki?HigherOrderFunction).

http://media.pragprog.com/titles/vslg/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/PickEven.groovy
http://c2.com/cgi/wiki?HigherOrderFunction
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=94

CLOSURES 95

If the closure is the last argument to a method call, you can attach

the closure to the method call as shown earlier. The code block, in

this case, appears like a parasite to the method call. Unlike Java code

blocks, Groovy closures can’t stand alone; they’re either attached to a

method or assigned to a variable.

What’s that it in the block? If you are passing only one parameter to the

code block, then you can refer to it with a special variable name it. You

can give an alternate name for that variable if you like, as shown here:

Download UsingClosures/PickEven.groovy

pickEven(10) { evenNumber -> println evenNumber }

The variable evenNumber now refers to the argument that is passed to

this closure from within the pickEven() method.

Now, let’s revisit the computations on even numbers. You can use pick-

Even() to compute the sum, as shown here:

Download UsingClosures/PickEven.groovy

total = 0

pickEven(10) { total += it }

println "Sum of even numbers from 1 to 10 is ${total}"

Similarly, you can compute the product, as shown here:

Download UsingClosures/PickEven.groovy

product = 1

pickEven(10) { product *= it }

println "Product of even numbers from 1 to 10 is ${product}"

The block of code in the previous example does something more than

the block of code you saw earlier. It stretches its hands and reaches

out to the variable product in the scope of the caller of pickEven(). This

is an interesting characteristic of closures. A closure is a function with

variables bound to a context or environment in which it executes.

Closures are derived from the lambda expressions from functional pro-

gramming: “A lambda expression specifies the parameter and the map-

ping of a function.” ([Seb04]) Closures are one of the most powerful

features in Groovy, yet they are syntactically elegant.3

3. “A little bit of syntax sugar helps you to swallow the λ calculus.” —Peter J. Landin

http://media.pragprog.com/titles/vslg/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/PickEven.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/PickEven.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=95

USE OF CLOSURES 96

5.2 Use of Closures

What makes closures interesting? Other than the syntactic elegance,

closures provide a simple and easy way for a function to delegate part

of its implementation logic.

In C you can delegate using function pointers. They’re very power-

ful, but they’re bound to hurt your head. Java uses anonymous inner

classes, but they tie you to an interface. Closures do the same thing but

are lighter and more flexible. In the following example, totalSelectValues()

accepts a closure to help decide the set of values used in computation:

Download UsingClosures/Strategy.groovy

def totalSelectValues(n, closure)

{

total = 0

for(i in 1..n)

{

if (closure(i)) { total += i }

}

total

}

print "Total of even numbers from 1 to 10 is "

println totalSelectValues(10) { it % 2 == 0 }

print "Total of odd numbers from 1 to 10 is "

println totalSelectValues(10) { it % 2 != 0}

The method totalSelectValues() iterates from 1 to n. For each value it

calls the closure4 to determine whether the value must be used in the

computation, and it delegates the selection process to the closure.

The closure attached to the first call to totalSelectValues() selects only

even numbers; the closure in the second call, on the other hand, selects

only odd numbers. If you’re a fan of design patterns [GHJV95], cele-

brate that you just implemented, effortlessly, the Strategy pattern.

Let’s look at another example. Assume you’re creating a simulator that

allows you to plug in different calculations for equipment. You want to

perform some computation but want to use the appropriate calculator.

4. return is optional even in closures; the value of the last expression (possibly null) is

automatically returned to the caller if you don’t have an explicit return (see Section 3.8,

return Is Not Always Optional, on page 68).

http://media.pragprog.com/titles/vslg/code/UsingClosures/Strategy.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=96

USE OF CLOSURES 97

The following code shows an example of how to do that:

Download UsingClosures/Simulate.groovy

class Equipment

{

def calculator

Equipment(calc) { calculator = calc }

def simulate()

{

println "Running simulation"

calculator() // You may send parameters as well

}

}

eq1 = new Equipment() { println "Calculator 1" }

aCalculator = { println "Calculator 2" }

eq2 = new Equipment(aCalculator)

eq3 = new Equipment(aCalculator)

eq1.simulate()

eq2.simulate()

eq3.simulate()

Equipment’s constructor takes a closure as a parameter and stores that

in a property named calculator. In the simulate() method, you call the

closure to perform the calculations. When an instance eq1 of Equipment

is created, a calculator is attached to it as a closure. What if you need

to reuse that code block? You can save the closure into a variable—like

the aCalculator in the previous code. You’ve used this in the creation

of two other instances of Equipment, namely, eq2 and eq3. The output

from the previous code is as follows:

Running simulation

Calculator 1

Running simulation

Calculator 2

Running simulation

Calculator 2

A great place to look for examples of closures is in the Collections classes,

which make extensive use of closures. Refer to Section 7.2, Iterating

Over an ArrayList, on page 126 for details.

http://media.pragprog.com/titles/vslg/code/UsingClosures/Simulate.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=97

WORKING WITH CLOSURES 98

5.3 Working with Closures

In the previous sections, you saw how to define and use closures. In

this section, you’ll learn how to send multiple parameters to closures.

it is the default name for a single parameter passed to a closure. You

can use it as long as you know that only one parameter is passed in.

If you have more than one parameter passed, you need to list those by

name, as in this example:

Download UsingClosures/ClosureWithTwoParameters.groovy

def tellFortune(closure)

{

closure new Date("11/15/2007"), "Your day is filled with ceremony"

}

tellFortune() { date, fortune ->

println "Fortune for ${date} is '${fortune}'"

}

The method tellFortune() calls its closure with two parameters, namely

an instance of Date and a fortune message String. The closure refers to

these two with the names date and fortune. The symbol -> separates the

parameter declarations in the closure from its body. The output from

the previous code is as follows:

Fortune for Thu Nov 15 00:00:00 MST 2007 is 'Your day is filled with ceremony'

Since Groovy supports optional typing, you can define the types of

parameters in the closure, if you like, as shown here:

Download UsingClosures/ClosureWithTwoParameters.groovy

tellFortune() { Date date, fortune ->

println "Fortune for ${date} is '${fortune}'"

}

5.4 Closure and Resource Cleanup

Java’s automatic garbage collection is a mixed blessing. You don’t have

to worry about resource deallocation, provided you release references.

But, there’s no guarantee when the resource may actually be cleaned

up, because it’s up to the discretion of the garbage collector. In certain

situations, you might want the cleanup to happen straightaway. This is

the reason you see methods such as close() and destroy() on resource-

intensive classes.

http://media.pragprog.com/titles/vslg/code/UsingClosures/ClosureWithTwoParameters.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/ClosureWithTwoParameters.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=98

CLOSURE AND RESOURCE CLEANUP 99

Execute Around Method

If you have a pair of actions that have to be performed
together—such as open and close—you can use the Execute
Around Method pattern, a Smalltalk pattern [Bec96]. You write
a method—the “execute around” method—that takes a block
as a parameter. In the method, you sandwich the call to the
block in between calls to the pair of methods; that is, call the
first method, then invoke the block, and finally call the second
method. Users of your method don’t have to worry about the
pair of action; they’re called automatically. Make sure you take
care of exceptions within the “execute around” method.

One problem, though, is the users of your class may forget to call these

methods. Closures can help ensure that these get called. I will show

you how.

The following code creates a FileWriter, writes some data, but forgets to

call close() on it. If you run this code, the file output.txt will not have the

data/character you wrote.

Download UsingClosures/FileClose.groovy

writer = new FileWriter('output.txt')

writer.write('!')

// forgot to call writer.close()

Let’s rewrite this code using the Groovy-added withWriter() method. with-

Writer() flushes and closes the stream automatically when you return

from the closure.

Download UsingClosures/FileClose.groovy

new FileWriter('output.txt').withWriter { writer ->

writer.write('a')

} // no need to close()

Now you don’t have to worry about closing the stream; you can focus

on getting your work done. You can implement such convenience meth-

ods for your own classes also, making the users of your class happy

and productive. For example, suppose you expect users of your class

Resource to call open() before calling any other instance methods and

then call close() when done.

http://media.pragprog.com/titles/vslg/code/UsingClosures/FileClose.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/FileClose.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=99

CLOSURE AND RESOURCE CLEANUP 100

Here is an example of the Resource class:

Download UsingClosures/ResourceCleanup.groovy

class Resource

{

def open() { print "opened..." }

def close() { print "closed" }

def read() { print "read..." }

def write() { print "write..." }

//...

Here is a usage of this class:

Download UsingClosures/ResourceCleanup.groovy

def resource = new Resource()

resource.open()

resource.read()

resource.write()

Sadly, the user of your class failed to close(), and the resource was not

closed, as you can see in the following output:

opened...read...write...

Closures can help here—you can use the Execute Around Method pat-

tern (see the sidebar on the previous page) to tackle this problem. Cre-

ate a static method named use(), in this example, as shown here:

Download UsingClosures/ResourceCleanup.groovy

def static use(closure)

{

def r = new Resource()

try

{

r.open()

closure(r)

}

finally

{

r.close()

}

}

In the previous static method, you create an instance of Resource, call

open() on it, invoke the closure, and finally call close(). You guard the

call with a try-finally, so you’ll close() even if the closure call throws an

exception.

http://media.pragprog.com/titles/vslg/code/UsingClosures/ResourceCleanup.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/ResourceCleanup.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/ResourceCleanup.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=100

CLOSURES AND COROUTINES 101

Now, the users of your class can use it, as shown here:

Download UsingClosures/ResourceCleanup.groovy

Resource.use { res ->

res.read()

res.write()

}

The output from the previous code is as follows:

opened...read...write...closed

Thanks to the closure, now the call to close() is automatic, determin-

istic, and right on time. You can focus on the application domain and

its inherent complexities and let the libraries handle system-level tasks

such as guaranteed cleanup in file I/O, and so on.

5.5 Closures and Coroutines

Calling a function or method creates a new scope in the execution

sequence of a program. You enter the function at one entry point (top).

Once you complete the method, you return to the caller’s scope.

Coroutines,5 on the other hand, allow a function to have multiple entry

points, each following the place of the last suspended call. You can

enter a function, execute part of it, suspend, and go back to execute

some code in the context or scope of the caller. You can then resume

execution of the function from where you suspended. Coroutines are

handy to implement some special logic or algorithms, such as in a

producer-consumer problem. A producer receives some input, does ini-

tial processing on it, and notifies a consumer to take that processed

value for further computation and output or storage. The consumer

does its part and, when done, notifies the producer to get more input.

In Java, wait() and notify() help you implement coroutines when com-

bined with multithreading. Closures give the impression (or illusion) of

coroutines in a single thread.

5. “In contrast to the unsymmetric relationship between a main routine and a subrou-

tine, there is complete symmetry between coroutines, which call on each other.” —Donald

E. Knuth in [Knu97]

http://media.pragprog.com/titles/vslg/code/UsingClosures/ResourceCleanup.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=101

CURRIED CLOSURE 102

For example, take a look at this:

Download UsingClosures/Coroutine.groovy

def iterate(n, closure)

{

1.upto(n) {

println "In iterate with value ${it}"

closure(it)

}

}

println "Calling iterate"

total = 0

iterate(4) {

total += it

println "In closure total so far is ${total}"

}

println "Done"

In this code, the control transfers back and forth between the iterate()

method and the closure. The output from the previous code is as fol-

lows:

Calling iterate

In iterate with value 1

In closure total so far is 1

In iterate with value 2

In closure total so far is 3

In iterate with value 3

In closure total so far is 6

In iterate with value 4

In closure total so far is 10

Done

In each call to the closure, you’re resuming with the value of total from

the previous call. It feels like the execution sequence is like the one

shown in Figure 5.1, on the following page—you’re switching between

the context of two functions back and forth.

5.6 Curried Closure

There’s a feature that adds spice to Groovy—it’s called curried closures.6

When you curry() a closure, you’re asking the parameters to be pre-

bound, as illustrated in Figure 5.2, on page 104. This can help remove

redundancy or duplication in your code.

6. It has really nothing to do with my favorite Indian dish.

http://media.pragprog.com/titles/vslg/code/UsingClosures/Coroutine.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=102

CURRIED CLOSURE 103

Figure 5.1: Execution sequence of a coroutine

Here’s an example:

Download UsingClosures/Currying.groovy

def tellFortunes(closure)

{

Date date = new Date("11/15/2007")

//closure date, "Your day is filled with ceremony"

//closure date, "They're features, not bugs"

// You can curry to avoid sending date repeatedly

postFortune = closure.curry(date)

postFortune "Your day is filled with ceremony"

postFortune "They're features, not bugs"

}

tellFortunes() { date, fortune ->

println "Fortune for ${date} is '${fortune}'"

}

The tellFortunes() method calls a closure multiple times. The closure

takes two parameters. So, tellFortunes() would have to send the first

parameter date in each call. Alternately, you can curry that parame-

ter. Call curry() with date as an argument. postFortune holds a reference

to the curried closure. The curried object prebinds the value of date.

http://media.pragprog.com/titles/vslg/code/UsingClosures/Currying.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=103

CURRIED CLOSURE 104

Closure

call(a, b)

create

call(b)

Curried

curry(a)
bind(a)

call(a, b)

Figure 5.2: Currying a closure

You can now call the curried closure and pass only the second parame-

ter (fortune) that is intended for the original closure. The curried closure

takes care of sending the fortune along with the prebound parameter

date to the original closure. The output of the code is as follows:

Fortune for Thu Nov 15 00:00:00 MST 2007 is 'Your day is filled with ceremony'

Fortune for Thu Nov 15 00:00:00 MST 2007 is 'They're features, not bugs'

You can curry any number of parameters, but you can curry only lead-

ing parameters. So if you have n parameters, you can curry any of the

first k parameters, where 0 <= k <= n.

Currying is to express a function that takes multiple parameters using

functions that take fewer (typically one) parameter. The name Curry was

coined after Haskell B. Curry by Christopher Strachey. Moses Schön-

finkel and Friedrich Ludwig Gottlob Frege invented the concept. The

curry function on the function f(X,Y) -> Z is defined as curry(f): X -> (Y -> Z).

Currying helps reduce and simplify methods for mathematical proofs.

For our purpose, in Groovy, currying can reduce the noise in code.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=104

DYNAMIC CLOSURES 105

5.7 Dynamic Closures

You can determine whether a closure has been provided to you. Oth-

erwise, you may decide to use a default implementation for, say, an

algorithm in place of a specialized implementation the caller failed to

provide. Here’s an example to figure out whether a closure is present:

Download UsingClosures/MissingClosure.groovy

def doSomeThing(closure)

{

if (closure) { return closure() }

println "Using default implementation"

}

doSomeThing() { println "Use specialized implementation" }

doSomeThing()

The output from the previous code is as follows:

Use specialized implementation

Using default implementation

You can also dynamically determine the number of parameters to a

closure and the types of those parameters, which gives you a greater

flexibility. Assume you use a closure to compute the tax for a sale. The

tax amount depends on the sale amount and the tax rate. Also assume

that the closure may or may not need you to provide the tax rate. Here’s

an example to examine the number of parameters:

Download UsingClosures/QueryingClosures.groovy

def completeOrder(amount, taxComputer)

{

tax = 0

if (taxComputer.maximumNumberOfParameters == 2)

{// expects tax rate

tax = taxComputer(amount, 6.05)

}

else

{// uses a default rate

tax = taxComputer(amount)

}

println "Sales tax is ${tax}"

}

completeOrder(100) { it * 0.0825 }

completeOrder(100) { amount, rate -> amount * (rate/100) }

http://media.pragprog.com/titles/vslg/code/UsingClosures/MissingClosure.groovy
http://media.pragprog.com/titles/vslg/code/UsingClosures/QueryingClosures.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=105

DYNAMIC CLOSURES 106

The maximumNumberOfParameters property (or getMaximumNumberOfPa-

rameters() method) tells you the number of parameters the given clo-

sure accepts. You can determine the types of these parameters using

the parameterTypes property (or getParameterTypes() method). The output

from the previous code is as follows:

Sales tax is 8.2500

Sales tax is 6.0500

Here is an example examining the parameters of the closures provided:

Download UsingClosures/ClosuresParameterTypes.groovy

def examine(closure)

{

println "$closure.maximumNumberOfParameters parameter(s) given:"

for(aParameter in closure.parameterTypes) { println aParameter.name }

println "--"

}

examine() { }

examine() { it }

examine() {-> }

examine() { val1 -> }

examine() {Date val1 -> }

examine() {Date val1, val2 -> }

examine() {Date val1, String val2 -> }

The output from the previous code is as follows:

1 parameter(s) given:

java.lang.Object

--

1 parameter(s) given:

java.lang.Object

--

0 parameter(s) given:

--

1 parameter(s) given:

java.lang.Object

--

1 parameter(s) given:

java.util.Date

--

2 parameter(s) given:

java.util.Date

java.lang.Object

--

2 parameter(s) given:

java.util.Date

java.lang.String

--

http://media.pragprog.com/titles/vslg/code/UsingClosures/ClosuresParameterTypes.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=106

CLOSURE DELEGATION 107

Even when a closure is not using any parameters as in {} or { it }, it takes

one parameter (whose name defaults to it). If the caller does not pass

any values to the closure, then the first parameter (it) refers to null. If

you want your closure to absolutely take no parameter, then you have

to use the syntax {-> }—the lack of parameter before -> indicates that

your closure takes 0 parameters.

Using the maximumNumberOfParameters and parameterTypes properties,

you can examine the given closures dynamically and implement logic

with greater flexibility.

Talking about examining objects, what does this mean within a closure?

We will take a look at this next.

5.8 Closure Delegation

Three properties of a closure determine which object handles a method

call from within a closure. These are this, owner, and delegate. Gener-

ally, the delegate is set to owner, but changing it allows you to exploit

Groovy for some really good metaprogramming capabilities. In this sec-

tion, we’ll examine these properties for closures:

Download UsingClosures/ThisOwnerDelegate.groovy

def examiningClosure(closure)

{

closure()

}

examiningClosure() {

println "In First Closure:"

println "class is " + getClass().name

println "this is " + this + ", super:" + this.getClass().superclass.name

println "owner is " + owner + ", super:" + owner.getClass().superclass.name

println "delegate is " + delegate +

", super:" + delegate.getClass().superclass.name

examiningClosure() {

println "In Closure within the First Closure:"

println "class is " + getClass().name

println "this is " + this + ", super:" + this.getClass().superclass.name

println "owner is " + owner + ", super:" + owner.getClass().superclass.name

println "delegate is " + delegate +

", super:" + delegate.getClass().superclass.name

}

}

http://media.pragprog.com/titles/vslg/code/UsingClosures/ThisOwnerDelegate.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=107

CLOSURE DELEGATION 108

foo()

1

2

3

closure
this

owner

delegate

Figure 5.3: Order of method resolution on method calls from closures

Within the first closure, you fetch the details about the closure, finding

out what this, owner, and delegate refer to. Then within the first closure,

you call a method and send it another closure defined within the first

closure, making the first closure the owner of the second closure. Within

this second closure, you print those details again. The output from the

previous code is as follows:

In First Closure:

class is ThisOwnerDelegate$_run_closure1

this is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

owner is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

delegate is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

In Closure within the First Closure:

class is ThisOwnerDelegate$_run_closure1_closure2

this is ThisOwnerDelegate@55e6cb2a, super:groovy.lang.Script

owner is ThisOwnerDelegate$_run_closure1@15c330aa, super:groovy.lang.Closure

delegate is ThisOwnerDelegate$_run_closure1@15c330aa, super:groovy.lang.Closure

The previous code example and the corresponding output show that

closures are created as inner classes. It also shows that the delegate is

set to owner. Certain Groovy functions—such as identity()—modify del-

egate to perform dynamic routing. this within a closure refers to the

object to which the closure is bound (the executing context). Variables

and methods referred to within the closure are bound to this—it has

dibs on handling any methods calls or access to any properties or vari-

ables. The owner stands in next and then the delegate. This sequence

is illustrated in Figure 5.3.

Here’s an example of method resolution:

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=108

CLOSURE DELEGATION 109

Download UsingClosures/MethodRouting.groovy

class Handler

{

def f1() { println "f1 of Handler called ..."}

def f2() { println "f2 of Handler called ..."}

}

class Example

{

def f1() { println "f1 of Example called ..."}

def f2() { println "f2 of Example called ..."}

def foo(closure)

{

closure.delegate = new Handler()

closure()

}

}

def f1() { println "f1 of Script called..." }

new Example().foo {

f1()

f2()

}

In this code, calls to methods within the closure are first routed to the

context object—this—for the closure. If they’re not found, they’re routed

to the delegate:

f1 of Script called...

f2 of Handler called ...

If you set the delegate property of a closure, ask whether it will have

side effects, especially if the closure can be used in other functions or

in other threads. If you’re absolutely sure that the closure is not used

elsewhere, you can set the delegate. If it is used elsewhere, avoid the

side effect—clone the closure, set the delegate on the clone, and use the

clone.

Refer to Section 18.6, Closures and DSLs, on page 282 to see how the

concepts you learned in this section are used to build DSLs. Also refer

to Section 8.1, Object Extensions, on page 141 and Section 14.2, Inject-

ing Methods Using ExpandoMetaClass, on page 208. ExpandoMetaClass

uses delegate to proxy methods of your class.

http://media.pragprog.com/titles/vslg/code/UsingClosures/MethodRouting.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=109

USING CLOSURES 110

5.9 Using Closures

You saw the power and elegance of closures in this chapter, but let’s

now discuss how to approach them in your projects. You need to decide

whether you want to implement a certain functionality or task as a

regular function/method or whether you should use a closure.

I view closures as pieces of code that augment, refine, or enhance

another piece of code. For example, a closure may be useful to express

a predicate or condition that will refine the selection of objects. Use clo-

sures where you want to take advantage of coroutines such as control

flow (like in iterators).

Closures are very helpful in two specific areas. They can help manage

resource cleanup (see Section 5.4, Closure and Resource Cleanup, on

page 98). They also help create internal DSLs (see Chapter 18, Creating

DSLs in Groovy, on page 277).

If I want to implement a certain well-identified task, I prefer a regular

function instead of a closure. A good time to introduce closures is dur-

ing refactoring. Why not get the code working first? Then revisit it to see

whether you can make it better and more elegant. Let a closure emerge

from this effort rather than forcing the use of a closure.

Keep your closures small and cohesive. These are intended to be small

chunks of code (a few lines) that are attached to method calls. When

writing a method that uses a closure, don’t overuse dynamic properties

of closures. It must be very simple and obvious to implement a closure

to call your method.

In this chapter, you became familiar with one of the most important

concepts in Groovy—one that you’ll use repeatedly. You now know how

to work with closures in a dynamic context. You also understand how

closures dispatch method calls. As you read the following chapters,

you’ll see several examples where closures stand out, so you’ll have

plenty of opportunity to appreciate their charm.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=110

Chapter 6

Working with Strings
We all know it’s a pain to work with strings in Java. As fundamental

as strings are in programming, you would think it would be easier. But

no, it takes effort to do basic string manipulation, to evaluate multiple

variables or expressions into a string representation, and even to do

something as simple as create a string that spans multiple lines. Groovy

to the rescue! Groovy takes away the pain of dealing with strings on

these fronts. It also makes pattern matching of strings with regular

expressions much easier by providing special operators. You’ll learn

the basics of Groovy strings in this chapter.

6.1 Literals and Expressions

Groovy allows you to create literals using single quotes—like ’hello’—

and you’ll quickly get used to creating strings with single quotes in

Groovy. In Java, ’a’ is a char, while "a" is a String. Groovy makes no such

distinction; both of these are instances of String in Groovy. However, if

you want to explicitly create an instance of Character—remember, there

are no primitives in Groovy, so you can’t use char—simply type ’a’ as

char.1 Of course, Groovy may implicitly create Character objects if any

method calls demand.

Groovy is also flexible about what you can put into a literal. For exam-

ple, you can have double quotes in your string if you want.

Download WorkingWithStrings/Literals.groovy

println 'He said, "That is Groovy"'

1. Just as int is treated as Integer, char is treated as Character. Groovy is an equal oppor-

tunity language.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Literals.groovy

LITERALS AND EXPRESSIONS 112

The output from the previous code is as follows:

He said, "That is Groovy"

Let’s examine the type of the object that was created using the single

quotes:

Download WorkingWithStrings/Literals.groovy

str = 'A string'

println str.getClass().name

The following output shows that the object is the popular String:

java.lang.String

Groovy treats a String created using single quotes as a pure literal. So,

if you put any expressions in it, Groovy won’t expand them; instead, it

will use them literally as you provided them. You’ll have to use double

quotes for that, as you’ll see soon:

Download WorkingWithStrings/Literals.groovy

value = 25

println 'The value is ${value}'

The output from the previous code is as follows:

The value is ${value}

Java Strings are immutable, and Groovy honors that immutability.2

Once you create an instance of String, you can’t modify its content by

calling setters, and so on. You can read a character using [] operator;

however, you can’t modify it, as you can see from the following code:

Download WorkingWithStrings/Literals.groovy

str = 'hello'

println str[2]

try

{

str[2] = '!'

}

catch(Exception ex)

{

println ex

}

2. Both in Java and Groovy you can find ways to get around encapsulation and break

immutability. In Groovy that’s a bit easier than in Java. But, you’re a good citizen inter-

ested in the good practices, so we’ll ignore those how-to-break-stuff approaches in this

book.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Literals.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Literals.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Literals.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=112

LITERALS AND EXPRESSIONS 113

The previous code produces the following output:

l

groovy.lang.MissingMethodException: No signature of method:

java.lang.String.putAt() is applicable for argument types:

(java.lang.Integer, java.lang.String) values: {2, "!"}

To create an expression, use either double quotes ("") or slashes (//).

You can use either one; however, double quotes are often used to define

string expressions, and forward slashes are used for regular expres-

sions. Here’s an example for creating an expression:

Download WorkingWithStrings/Expressions.groovy

value = 12

println "He paid \$${value} for that."

The output from the previous code is as follows:

He paid $12 for that.

The variable value was expanded within the string. I had to use the

escape character (\) to print the $ symbol since Groovy uses that symbol

for embedding expressions. You don’t have to escape the $ if you use

slashes to define the string instead of double quotes. The {} around

expressions are optional if the expression is a simple variable name

like value or access to a property. So, you could write the statement

println "He paid \$${value} for that." as println "He paid \$$value for that." or

println (/He paid $$value for that/). Try leaving out the {} in expressions

and see whether Groovy complains. You can always add it if needed.

You can store an expression in a string and print it later—Groovy uses

lazy evaluation. Let’s look at an example:

Download WorkingWithStrings/Expressions.groovy

what = new StringBuffer('fence')

text = "The cow jumped over the $what"

println text

what.replace(0, 5, "moon")

println text

The output from the previous code is as follows:

The cow jumped over the fence

The cow jumped over the moon

When you print the string expression in text, the current value in the

object referred to by what is used. So, the first time you printed text, you

got “The cow jumped over the fence.” Then, after changing the value in

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Expressions.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Expressions.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=113

GSTRING LAZY EVALUATION PROBLEM 114

the StringBuffer when you reprinted the string expression—you did not

modify the content of text—you got a different output, this time the

phrase “The cow jumped over the moon” from the popular rhyme “Hey

Diddle Diddle.“

From this behavior you see that strings created using single quotes are

different from those created using double quotes or slashes. Strings

created using single quotes are regular java.lang.Strings. However, those

created using double quotes and slashes are special. The authors of

Groovy have a weird sense of humor—they called them GStrings, short

for Groovy strings. Let’s look at the type of the objects created using

different string syntax:

Download WorkingWithStrings/Expressions.groovy

def printClassInfo(obj)

{

println "class: ${obj.getClass().name}"

println "superclass: ${obj.getClass().superclass.name}"

}

val = 125

printClassInfo ("The Stock closed at ${val}")

printClassInfo (/The Stock closed at ${val}/)

printClassInfo ("This is a simple String")

From the output for the previous code, shown next, you can see the

actual types of the objects created:

class: org.codehaus.groovy.runtime.GStringImpl

superclass: groovy.lang.GString

class: org.codehaus.groovy.runtime.GStringImpl

superclass: groovy.lang.GString

class: java.lang.String

superclass: java.lang.Object

Groovy does not readily create an instance of GString simply because

you use double quotes or slashes. It intelligently analyzes the string to

determine whether it can get away with a simple regular String. You can

see that in the example, the argument to the last call of printClassInfo()

is an instance of String even though you used double quotes to create it.

6.2 GString Lazy Evaluation Problem

When I first encountered GString lazy evaluation, I tripped over this

really badly, and some bright people pulled me up and helped me grasp

this concept. So, I think it deserves some discussion.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/Expressions.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=114

GSTRING LAZY EVALUATION PROBLEM 115

Here’s the example that worked well in the previous section:

Download WorkingWithStrings/LazyEval.groovy

what = new StringBuffer('fence')

text = "The cow jumped over the $what"

println text

what.replace(0, 5, "moon")

println text

The output from the previous code is as follows:

The cow jumped over the fence

The cow jumped over the moon

The GString (text) contains the variable what. The expression is evaluated

just in time each time you print it—when the toString() method is called

on it. If you changed the value in the StringBuffer object referred by what,

the expression reflects it when printed. That seems reasonable, right?

Unfortunately, this is not the behavior you’ll see if you modify the refer-

ence what instead of changing the referenced object’s properties—that’s

what you’d naturally do if the object were immutable. Here’s an exam-

ple that shows the problem:

Download WorkingWithStrings/LazyEval.groovy

price = 568.23

company = 'Google'

quote = "Today $company stock closed at $price"

println quote

stocks = [Apple : 130.01, Microsoft : 35.95]

stocks.each { key, value ->

company = key

price = value

println quote

}

This code stores an expression in quote that has the variables company

and price. When you print it the first time, it correctly prints Google and

the its stock price. You have the stocks of a few other companies, and

you want to use the expression you created before to print the quote for

these companies as well. So, you iterate over the stocks map—within the

closure you have the company as the key and the price as the value.

However, when you print the quote, the result (shown next) is not what

you expected. You have to fix this problem before your colleagues start

another “Google has taken over the world” debate.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/LazyEval.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/LazyEval.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=115

GSTRING LAZY EVALUATION PROBLEM 116

Today Google stock closed at 568.23

Today Google stock closed at 568.23

Today Google stock closed at 568.23

First, let’s figure out why it did not work as expected, and then we can

figure out a solution. When you defined the GString—quote—you bound

the variables company and price to a String holding the value Google

and an Integer holding that obscene stock price, respectively. You can

change the company and price references all you want (both of these are

referring to immutable objects) to refer to other objects, but you’re not

changing what the GString instance has been bound to.

“The cow jumping over...” example worked because you modified the

object that the GString was bound to; however, in this example, you

don’t. You can’t because of immutability. The solution? You need to ask

the GString to reevaluate the reference.3

Closures come to the rescue again. Closures in Groovy are what help

you define some code now but execute it later. GString does something

special when evaluating expressions—if you have a variable, it prints

its value to a writer, typically a StringWriter. However, instead of a vari-

able, if you have a closure, it invokes the closure. If your closure takes

a parameter (remember that if you don’t specify any parameters, by

default it takes one4), then GString sends the Writer object to the param-

eter of your closure. If your closure takes no parameters at all, then it

simply calls your closure and prints the result you return to the writer.

If your closure takes more than one parameter, then the call fails with

an exception. Let’s not go there.

So, let’s put that wisdom to use. Here’s the first attempt:

Download WorkingWithStrings/LazyEval.groovy

companyClosure = { it.write(company) }

priceClosure = { it.write("$price") }

quote = "Today ${companyClosure} stock closed at ${priceClosure}"

stocks.each { key, value ->

company = key

price = value

println quote

}

3. “Any problem in computer science can be solved with another level of indirection.”

—David Wheeler
4. See Section 5.7, Dynamic Closures, on page 105.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/LazyEval.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=116

GSTRING LAZY EVALUATION PROBLEM 117

The output from the previous code is as follows:

Today Apple stock closed at 130.01

Today Microsoft stock closed at 35.95

So, you got the output you desire, but the code does not look that

groovy. Even though you don’t want to implement your final code this

way, I think seeing this example will help you in two ways. First, you

can see what’s really going on—the GString is calling your closure at

the time when the expression needs to be evaluated/printed. Second,

if you have a need to do some computations that are more than merely

displaying a property’s value, you know how to do it.

Let’s first get rid of that parameter it. Like I mentioned earlier, if your

closure has no parameters, then GString uses what you return. You

know how to create a closure with no parameters—define it with the

syntax {->. So, let’s refactor the previous code:

Download WorkingWithStrings/LazyEval.groovy

companyClosure = {-> company }

priceClosure = {-> price }

quote = "Today ${companyClosure} stock closed at ${priceClosure}"

stocks.each { key, value ->

company = key

price = value

println quote

}

The output from this code is as follows:

Today Apple stock closed at 130.01

Today Microsoft stock closed at 35.95

That’s a notch better, but still, you don’t want to define the closures

separately. Instead, you want your code to be self-contained for simple

cases, and you’re willing to write a separate closure if you have more

code to compute the values. Here’s the self-contained code that solves

the problem (we’ll call it the “Google taking over the world problem”):

Download WorkingWithStrings/LazyEval.groovy

quote = "Today ${-> company } stock closed at ${-> price }"

stocks.each { key, value ->

company = key

price = value

println quote

}

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/LazyEval.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/LazyEval.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=117

MULTILINE STRING 118

The output from the previous code is as follows:

Today Apple stock closed at 130.01

Today Microsoft stock closed at 35.95

GString’s lazy evaluation is a very powerful concept. However, use cau-

tion not to trip over that string. If you expect your references used in

expressions to change and you want their current value to be used in

the lazy evaluation, remember not to place them directly in the expres-

sions. Instead, place them within a no-parameter closure.

6.3 Multiline String

When you want to create a multiline string in Java, you have to use

code like str += ..., concatenated multiple lines using the + operator, or

multiple calls to the append() method of StringBuffer or StringBuilder.

You’d have to use a lot of escape characters, and writing that usually

is followed by a long grimace. You might have complained that “there’s

gotta be a better way to do that.” In Groovy there is. You can define

a multiline literal by enclosing the string within three single quotes

(”’...”’)—that’s Groovy’s support of here documents, or heredocs:

Download WorkingWithStrings/MultilineStrings.groovy

memo = '''Several of you raised concerns about long meetings.

To discuss this, we will be holding a 3 hour meeting starting

at 9AM tomorrow. All getting this memo are required to attend.

If you can't make it, please have a meeting with your manager to explain.

'''

println memo

The output from the previous code is as follows:

Several of you raised concerns about long meetings.

To discuss this, we will be holding a 3 hour meeting starting

at 9AM tomorrow. All getting this memo are required to attend.

If you can't make it, please have a meeting with your manager to explain.

What if you want to create a string with embedded values of variables?

Just as you can create GStrings that can hold expressions using double-

quoted strings, you can create multiline expressions using three double

quotes.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/MultilineStrings.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=118

MULTILINE STRING 119

Download WorkingWithStrings/MultilineStrings.groovy

price = 251.12

message = """We're very pleased to announce

that our stock price hit a high of \$${price} per share

on December 24th. Great news in time for...

"""

println message

The previous code gives the following output:

We're very pleased to announce

that our stock price hit a high of $251.12 per share

on December 24th. Great news in time for...

I write a monthly newsletter, and a couple of years ago I decided to con-

vert the program I use to send email notifications to Groovy. Groovy’s

ability to create multiline strings with embedded values came in handy.

Groovy even makes it easy to spam! (Hey, I’m just kidding.)

Let’s take a look at an example of using the feature you learned just

now. Assume you have a map of languages and authors and want to

create an XML representation of it. Here is a way to do that:5

Download WorkingWithStrings/CreateXML.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

content = ''

langs.each {language, author ->

fragment = """

<language name="${language}">

<author>${author}</author>

</language>

"""

content += fragment

}

xml = "<languages>${content}</languages>"

println xml

5. If you are impressed with this, wait until you see the XML builders (Section 17.1,

Building XML, on page 260).

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/MultilineStrings.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/CreateXML.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=119

STRING CONVENIENCE METHODS 120

The output from the previous code is as follows:

<languages>

<language name="C++">

<author>Stroustrup</author>

</language>

<language name="Java">

<author>Gosling</author>

</language>

<language name="Lisp">

<author>McCarthy</author>

</language>

</languages>

You’re using the multiline string with embedded expressions to create

the desired content. The content is generated by iterating over the map

that contains the data.

6.4 String Convenience Methods

You already heard me praise the execute method of String. In fact, it

helped you create a Process object so you can execute system-level pro-

cesses with only a couple of lines of code.6

You can get fancier with String using other methods. For example, take

a look at the following code that uses an overloaded operator of String:

Download WorkingWithStrings/StringConvenience.groovy

str = "It's a rainy day in Seattle"

println str

str -= "rainy "

println str

The output from the previous code is as follows:

It's a rainy day in Seattle

It's a day in Seattle

The -= operator is useful to manipulate a string, because it removes part

of the string that matches the string on the right side. This is made

possible by the Groovy-added minus() method on the String class (see

6. See Section 3.1, A Quick Look at the GDK, on page 40.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/StringConvenience.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=120

REGULAR EXPRESSIONS 121

Section 3.6, Operator Overloading, on page 56). Groovy adds other con-

venience methods7 to String: plus() [+], multiply() [*], next() [++], replaceAll(),

and tokenize(), to mention a few.

You can iterate over a range of Strings as well, as shown here:

Download WorkingWithStrings/StringRange.groovy

for(str in 'held'..'helm')

{

print "${str} "

}

println ""

The output from the previous code is as follows:

held hele helf helg helh heli helj helk hell helm

Here you are still using the same java.lang.String; however, all these

added facilities will help you get your work done quickly.

6.5 Regular Expressions

The JDK package java.util.regex contains the API for pattern matching

with regular expressions8 (RegEx). String’s replaceFirst() and replaceAll()

methods, among other methods, make good use of RegEx pattern

matching. Groovy adds operators and symbols to make it easier to pro-

gram with RegEx.

Groovy provides the operator ~ to easily create a RegEx pattern. This

operator maps to String’s negate() method:

Download WorkingWithStrings/RegEx.groovy

obj = ~"hello"

println obj.getClass().name

The output from the previous code is as follows:

java.util.regex.Pattern

The previous example shows that ~ applied to String creates an instance

of Pattern. You can use either (single or double) quotes or slashes to

create a RegEx. The slashes have an added advantage that you don’t

have to escape backslashes. So, /\d*\w*/ is an equivalent and elegant

cousin of "\\d*\\w*".

7. Refer to http://groovy.codehaus.org/groovy-jdk/java/lang/String.html for more details.
8. For a detailed discussion of RegEx, refer to [Fri97].

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/StringRange.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/RegEx.groovy
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=121

REGULAR EXPRESSIONS 122

Groovy provides a couple of operators to facilitate matching regular

expressions: =~ and ==~. Let me explain the capabilities of and differ-

ences between these operators:

Download WorkingWithStrings/RegEx.groovy

pattern = ~"(G|g)roovy"

text = 'Groovy is Hip'

if (text =~ pattern)

println "match"

else

println "no match"

if (text ==~ pattern)

println "match"

else

println "no match"

The previous code gives you the following output:

match

no match

The =~ performs a RegEx partial match, while the ==~ performs a RegEx

exact match. So, in the previous code example, the first pattern match

reports a “match,” while the second one reports a “no match.”

The =~ operator returns a matcher object,9 which is an instance of

java.util.regex.Matcher. If the match results in multiple matches, then

the matcher contains an array of the matches. This helps quickly get

access to different parts of the text that match the given RegEx.

Download WorkingWithStrings/RegEx.groovy

matcher = 'Groovy is groovy' =~ /(G|g)roovy/

print "Size of matcher is ${matcher.size()} "

println "with elements ${matcher[0]} and ${matcher[1]}."

The previous code reports the details of the Matcher, as follows:

Size of matcher is 2 with elements ["Groovy", "G"] and ["groovy", "g"].

You can replace matching contents of text easily using the replaceFirst()

method (for replacing only the first match as the name indicates) or the

replaceAll() method (for replacing all matches).

9. Groovy handles boolean evaluation of Matcher differently; it returns true if there’s at

least one match. See Section 3.5, Groovy boolean Evaluation, on page 55.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/RegEx.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/RegEx.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=122

REGULAR EXPRESSIONS 123

Download WorkingWithStrings/RegEx.groovy

str = 'Groovy is groovy, really groovy'

println str

result = (str =~ /groovy/).replaceAll('hip')

println result

The original text and the replaced text is as follows:

Groovy is groovy, really groovy

Groovy is hip, really hip

To summarize, here are the Groovy operators related to RegEx:

• To create a pattern from a string, use the ~ operator.

• To define a RegEx, use forward slashes as in /[G|g]roovy/.

• To determine whether there’s a match, use =~.

• For an exact match, use ==~.

In this chapter, you saw how Groovy makes creating and using string so

much easier than in Java. It is a breeze to create multiline strings and

strings with expressions. You also saw how Groovy simplifies the effort

to work with RegEx. Groovy strings will make you feel turbocharged

when you get down to regular string manipulations or working with

regular expressions.

http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/RegEx.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=123

Chapter 7

Working with Collections
We constantly work with collections of objects in Java. You collect them,

pass them around as lists, look in a dictionary or map for values based

on keys, sort them, iterate over them, and so on. I imagine you want

such common everyday operations to be easy, flexible, and intuitive.

Groovy takes the already powerful Java collections and makes their

API simpler and easier. Groovy has added a number of convenience

methods, effectively using closures as parameters to several methods.

In this chapter, you’ll dive into two collections—List and Map—and learn

the Groovy way of using them. After this chapter, you’ll never want to

use collections again the way you did.

7.1 Using List

Creating an instance of java.util.ArrayList is easier in Groovy than in Java.

You don’t have to use new or specify the class name. Simply list the

initial values you want in the List, as shown here:

Download WorkingWithCollections/CreatingArrayList.groovy

lst = [1, 3, 4, 1, 8, 9, 2, 6]

println lst

println lst.getClass().name

The output from the previous code is as follows:

[1, 3, 4, 1, 8, 9, 2, 6]

java.util.ArrayList

When you declared a list in Groovy, the reference lst actually refers to

an instance of java.util.ArrayList, as you can see from the previous output.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy

USING LIST 125

You can fetch the elements of the List by using the [] operator, as shown

in the following example:

Download WorkingWithCollections/CreatingArrayList.groovy

println lst[0]

println lst[lst.size() - 1]

The following output shows the values of the first and last elements in

the list:

1

6

But, you don’t have to jump that many hoops to get to the last ele-

ment of the list—Groovy has a simpler way. You can use negative index

values, and Groovy will traverse from right instead of left:

Download WorkingWithCollections/CreatingArrayList.groovy

println lst[-1]

println lst[-2]

The previous code gets you the last two elements of the list, as shown

in the following output:

6

2

You can even get contiguous values from the collection using the Range

object, as shown here:

Download WorkingWithCollections/CreatingArrayList.groovy

println lst[2..5]

The previous code returns four contiguous values in the list starting

from the element at position 2, as shown here:

[4, 1, 8, 9]

You can even use negative index in the range as in the following code,

which produces the same result as the previous code:

Download WorkingWithCollections/CreatingArrayList.groovy

println lst[-6..-3]

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=125

ITERATING OVER AN ARRAYLIST 126

Let’s quickly examine what lst[2..5] actually returned:

Download WorkingWithCollections/CreatingArrayList.groovy

subLst = lst[2..5]

println subLst.dump()

subLst[0] = 55

println "After subLst[0]=55 lst = $lst"

The output from the previous code is as follows:

<java.util.RandomAccessSubList@fedbf l=[1, 3, 4, 1, 8, 9, 2, 6]

offset=2 size=4 expectedModCount=1 modCount=0>

After subLst[0]=55 lst = [1, 3, 55, 1, 8, 9, 2, 6]

If you use a range like 2..5 as the index, java.util.ArrayList returns an

instance of java.util.RandomAccessSubList, which holds an offset into the

original list. So be aware, you did not get a copy—if you change an

element using one list, you’re affecting the other.

You can see how Groovy has made the API for List much simpler. You are

using the same, good old ArrayList, but when seen through your Groovy

eyes, it looks a lot prettier and lighter, doesn’t it?

7.2 Iterating Over an ArrayList

One of the first things you’re likely to want to do on a list is to navi-

gate or iterate. Groovy provides elegant ways to not only iterate but to

perform operations on the values as you iterate over your lists.

List’s each Method

As you saw in Chapter 5, Using Closures, on page 92, Groovy provides

convenient ways to iterate collections. This iterator, the method named

each(), is also known as an internal iterator. For more information, see

the sidebar on the following page.

Download WorkingWithCollections/IteratingArrayList.groovy

lst = [1, 3, 4, 1, 8, 9, 2, 6]

lst.each { println it }

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CreatingArrayList.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/IteratingArrayList.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=126

ITERATING OVER AN ARRAYLIST 127

Internal vs. External Iterators

You’re used to external iterators in languages like C++ and
Java. These are iterators that allow the user or client of the iter-
ator to control the iteration. You have to check whether you’re
at the end and explicitly move to the next element.

Internal iterators are popular in languages that support
closures—the user or client of the iterator does not control the
iteration. Instead, they send a block of code that will be exe-
cuted for each element in the collection.

Internal iterators are easier to use—you don’t have to con-
trol the iteration. External iterators are more flexible; you can
take control of the iteration sequence, skip elements, termi-
nate, restart iteration, and so on, more easily.

Implementors of internal iteration can take extra effort to give
you that flexibility and the convenience at the same time. You’ll
find not one but different methods on List for this reason.

In this code example, you iterate over the elements of a List using the

each() method1 and print each element, as shown in the following

output:

1

3

4

1

8

9

2

6

You can also do other operations (see Section 5.2, Use of Closures, on

page 96), such as summing the elements of the collection, as shown

here:

Download WorkingWithCollections/IteratingArrayList.groovy

total = 0

lst.each { total += it }

println "Total is $total"

The result of executing the previous code is as follows:

Total is 34

1. Use reverseEach() if you want to iterate elements in reverse order. If you need a count

or an index during iteration, use eachWithIndex().

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/IteratingArrayList.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=127

ITERATING OVER AN ARRAYLIST 128

Suppose you want to double each element of the collection. Let’s take a

stab at it using the each() method:

Download WorkingWithCollections/IteratingArrayList.groovy

doubled = []

lst.each { doubled << it * 2 }

println doubled

The output from the previous code is as follows:

[2, 6, 8, 2, 16, 18, 4, 12]

You create an empty ArrayList named doubled to hold the result. While

iterating through the collection, you double each element and push the

value into the result using the << operator (leftShift()).

If you want to perform some operations on each element in a collection,

the each() method is your friend.

List’s collect Method

If you want to operate on each element in a collection and return a

resulting collection, there is a simpler way in Groovy to do that—the

collect() method, as shown here:

Download WorkingWithCollections/IteratingArrayList.groovy

println lst.collect { it * 2 }

The collect() method, like each(), invokes the closure for each element of

the collection. However, it collects the return value from the closure into

a collection and finally returns that resulting collection. The closure, in

the previous example, is returning2 double the value it’s given. You

get back an ArrayList with the input values doubled, as shown in the

following output:

[2, 6, 8, 2, 16, 18, 4, 12]

If you want to perform operations on each element of a collection, use

each(); however, if you want a collection of the result of such a compu-

tation, use the collect() method.

2. There’s an implicit return in the closure. For more information, see Section 3.8, return

Is Not Always Optional, on page 68.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/IteratingArrayList.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/IteratingArrayList.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=128

FINDER METHODS 129

7.3 Finder Methods

You know how to iterate over a collection and perform operations on

each element. However, if you want to search for a particular element,

each() or collect() are not convenient. Instead, you should use find(),

like so:

Download WorkingWithCollections/Find.groovy

lst = [4, 3, 1, 2, 4, 1, 8, 9, 2, 6]

println lst.find { it == 2 }

The output from the previous code is as follows:

2

In this code, you’re looking for an object that matches value 2 in the

collection. find() gets you the first occurrence of the matching object.

In this case, it returns the object at position 3. Just like the each()

method, the find() method iterates over the collection, but only until

the closure returns a true. On receiving a true, find() breaks from the

iteration and returns the current element. If it never receives a true,

then find() returns a null.

Specify any condition you want in the closure you attach to find(). Here’s

how you’d look for the first element greater than 4:

Download WorkingWithCollections/Find.groovy

println lst.find { it > 4 }

The output from the previous code is as follows:

8

You can also find all occurrences of 2. Just as the find() method behaves

like each(), the findAll() method behaves like collect():

Download WorkingWithCollections/Find.groovy

println lst.findAll { it == 2 }

The previous code returns all the 2s it can find, as shown in the follow-

ing output:

[2, 2]

You looked for 2s, and it’s returning the objects and not the positions.3

3. If you want to find the position of the first matching object, use the findIndexOf()

method.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/Find.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/Find.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/Find.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=129

COLLECTIONS’ CONVENIENCE METHODS 130

In the simplest case, this does not sound very useful. However, in gen-

eral, if you’re looking for objects that match some criteria, you will get

those objects. For example, if you look for all cities over a certain pop-

ulation, the result will be a list of the appropriate cities. Returning to

the previous example, if you want all numbers that are greater than 4,

here’s how to get them:

Download WorkingWithCollections/Find.groovy

println lst.findAll { it > 4 }

The result of the previous code is as follows:

[8, 9, 6]

In general, if you have a collection of arbitrary objects, find() and findAll()

will help you filter out those objects that meet a certain criteria.

7.4 Collections’ Convenience Methods

There are a number of convenience methods that Groovy adds to Col-

lections.4 Let’s take an example and implement it first using the method

you’re already familiar with—the each() method. Then we’ll refactor

that example using methods that will make your code self-contained

and expressive. Along the way, you’ll see how Groovy treats code blocks

as first-class citizens, like functional programming languages do.

Suppose you have a collection of strings and want to count the total

number of characters. Here’s a way to do that using the each() method:

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

lst = ['Programming', 'In', 'Groovy']

count = 0

lst.each { count += it.size() }

println count

The output from the previous code is as follows:

19

Groovy gives you more than one way to do stuff.

4. For a list of methods added to Collections, refer to http://groovy.codehaus.org/groovy-jdk/

java/util/Collection.html.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/Find.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=130

COLLECTIONS’ CONVENIENCE METHODS 131

Here’s another way using collect() and sum() (both are Groovy-added

methods on Collections):

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

println lst.collect { it.size() }.sum()

I am calling the sum() method on the Collection returned by the collect()

method. The output from the previous code is as follows:

19

The previous code is a bit terse but is self-contained: each() is useful

to work on each individual element of a collection and get a cumulative

result. However, collect() is useful if you want to apply some compu-

tation on each element of a collection but still retain the result as a

collection. You can take advantage of this to apply other operations

(such as the sum() method) that can cascade down on the collection.

You can also do the same using the inject() method:

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

println lst.inject(0) { carryOver, element -> carryOver + element.size() }

The output from the previous code is as follows:

19

inject() calls the closure for each element of the collection. The element

is represented, in this example, by the element parameter. inject() takes

as a parameter an initial value that it will inject, through the carryOver

parameter, into the first call to the closure. It then injects the result

from the closure into the subsequent call to the closure. You’ll prefer

the inject() method over the collect() method if you want a cumulative

result of applying a computation on each element of a collection.

Suppose you want to concatenate the elements of the collection into a

sentence. You can do that easily with join():

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

println lst.join(' ')

The output from the previous code is as follows:

Programming In Groovy

join() iterates over each element, concatenating each of them with the

character given as the input parameter. In this example, the parame-

ter given is a whitespace, so join() returns the string “Programming In

Groovy.” The join() method comes in handy when you want to take a

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=131

COLLECTIONS’ CONVENIENCE METHODS 132

collection of paths and concatenate them—for instance, using a colon

(:) to form a classpath—all using one simple call.

You can replace an element of a List by assigning to an index. In the

following code, you’re setting [’Be’, ’Productive’] to element 0:

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

lst[0] = ['Be', 'Productive']

println lst

This results in a List within the collection, as shown here:

[["Be", "Productive"], "In", "Groovy"]

If that’s not what you want, flatten the List with flatten():

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

lst = lst.flatten()

println lst

This results in a flattened single List of objects, as shown here:

["Be", "Productive", "In", "Groovy"]

You can also use the - operator (minus() method) on List, as shown here:

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

println lst - ['Productive', 'In']

The elements in the right operand are removed from the collection on

the left. If you provide a nonexistent element, no worries—it’s simply

ignored. The - operator is flexible, so you can provide either a list or a

single value for the right operand. The output from the previous code is

as follows:

["Be", "Groovy"]

Use the reverse() method if you want to get a copy of the list with the

elements in reverse order.

Here’s another convenience in Groovy: you can easily perform an oper-

ation on each element without actually using an iterator:

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

println lst.size()

println lst*.size()

The output from the previous code is as follows:

4

[2, 10, 2, 6]

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=132

USING MAP 133

The first call to size() is on the list, so it returns 4, the current number of

elements in the list. The second call (because of the influence of *) is on

each element (String in this example) of the list, so it returns a List with

each element holding the size of corresponding elements in the original

collection. The effect of lst*.size() is the same as lst.collect { it.size() }.

Finally, I’ll show how you can use an ArrayList in method calls. If a

method takes a number of parameters, instead of sending individual

arguments, you can explode an ArrayList as arguments, that is, split the

collection into individual objects using the * operator (the spread oper-

ator), as shown next. For this to work correctly, the size of the ArrayList

must be the same as the number of parameters the method expects.

Download WorkingWithCollections/CollectionsConvenienceMethods.groovy

def words(a, b, c, d)

{

println "$a $b $c $d"

}

words(*lst)

The output from the previous code is as follows:

Be Productive In Groovy

7.5 Using Map

Java’s java.util.Map is useful when you want to work with an associative

set of key and value pairs. Again, Groovy makes working with Maps

simpler and elegant with the use of closures. Creating an instance of

Map is also simple, because you don’t need to use new or specify any

class names. Simply create pairs of values, as shown here:

Download WorkingWithCollections/UsingMap.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

println langs.getClass().name

The output from the code is as follows:

java.util.LinkedHashMap

This example creates a hash map of some languages as keys and their

authors as values. The keys are separated from their values using the

colon (:), and the entire map is placed in a []. This simple Groovy syn-

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/CollectionsConvenienceMethods.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=133

USING MAP 134

tax created an instance of java.util.LinkedHashMap. You can see that by

calling getClass() and getting the name property of it.5

You can access the value for a key using the [] operator, as in the fol-

lowing code:

Download WorkingWithCollections/UsingMap.groovy

println langs['Java']

println langs['C++']

The output from the previous code is as follows:

Gosling

Stroustrup

I’m sure you’re expecting something fancier here, and Groovy is sure

not going to let you down. You can access the values by using the key

as if it were a property of the Map:

Download WorkingWithCollections/UsingMap.groovy

println langs.Java

The output from the previous code is as follows:

Gosling

That is neat—it’s convenient to send a key as if it were a property of

the object, and the Map smartly returns the value. Of course, an expe-

rienced programmer immediately asks “What’s the catch?” You already

saw a catch or gotcha. You’re not able to call the class property on the

Map since it assumes that to be a key, it returns a null value, and the

call to the name property on null fails obviously.6 So, you had to call the

getClass() method. But what about the key C++? Let’s try that:

Download WorkingWithCollections/UsingMap.groovy

println langs.C++ // Invalid code

The output from the previous code is as follows:

java.lang.NullPointerException: Cannot invoke method next() on null object

What the...? You may discard this example code by saying C++ is always

a problem, no matter where you go.

5. As an astute reader, you may have observed the call to the getClass() method instead

of access to the class property. Read further to see the reason for that little gotcha.
6. Instances of Map and a few other classes don’t return the Class metaobject when you

call the class property. To avoid surprises, always use the getClass() method instead of the

class property on instances.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=134

ITERATING OVER MAP 135

But, this problem is actually because of another feature of Groovy inter-

fering here—operator overloading (see Section 3.6, Operator Overload-

ing, on page 56). Groovy took the previous request as a get with key “C,”

which doesn’t exist. So, it returned a null and then tried to call the next()

method (the operator ++ maps to it). Luckily, there is a workaround for

special cases like this. Simply present the key with offending characters

as a String, as shown here:

Download WorkingWithCollections/UsingMap.groovy

println langs.'C++'

Now you can be happy to get the following output:

Stroustrup

When defining a Map in Groovy, you can skip the quotes around well-

behaved key names. For instance, you can write the map of languages

and their authors, as shown here:

Download WorkingWithCollections/UsingMap.groovy

langs = ['C++' : 'Stroustrup', Java : 'Gosling', Lisp : 'McCarthy']

7.6 Iterating Over Map

You can iterate over a Map,7 just like how you iterated over an ArrayList

(see Section 7.2, Iterating Over an ArrayList, on page 126).

Map has a flavor of the each() and collect() methods.

Map’s each Method

Let’s look at an example of using the each() method:

Download WorkingWithCollections/NavigatingMap.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

langs.each { entry ->

println "Language $entry.key was authored by $entry.value"

}

The output from the previous code is as follows:

Language C++ was authored by Stroustrup

Language Java was authored by Gosling

Language Lisp was authored by McCarthy

7. For details on methods added to Map, visit http://groovy.codehaus.org/groovy-jdk/java/util/

Map.html.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/UsingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://groovy.codehaus.org/groovy-jdk/java/util/Map.html
http://groovy.codehaus.org/groovy-jdk/java/util/Map.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=135

ITERATING OVER MAP 136

If the closure you attach to each() takes only one parameter, then

each() sends an instance of MapEntry8 for that parameter. If, however,

you want to get the key and the value separately, simply provide two

parameters in the closure as in the following example:

Download WorkingWithCollections/NavigatingMap.groovy

langs.each { language, author ->

println "Language $language was authored by $author"

}

The output from the previous code is as follows:

Language C++ was authored by Stroustrup

Language Java was authored by Gosling

Language Lisp was authored by McCarthy

This code example iterates over the langs collection using the each()

method. The each() method calls the closure with a key and value. You

refer to these two parameters in the closure using the variable names

language and author, respectively.

Map’s collect Method

Let’s next examine the collect() method in Map. First, it’s similar to

the method in ArrayList in that both methods return a list. However, if

you want Map’s collect() to send your closure a MapEntry, define one

parameter; otherwise, define two parameters for the key and value, as

shown here:

Download WorkingWithCollections/NavigatingMap.groovy

println langs.collect { language, author ->

language.replaceAll("[+]", "P")

}

The output from the previous code is as follows:

["CPP", "Java", "Lisp"]

In the previous code, you replace all occurrences of + in the closure

with the character P.

You can easily transform the data in a Map into other representations.

For example, in Section 17.1, Building XML, on page 260, you’ll see how

easy it is to create an XML representation.

8. For other methods like collect(), find(), and so on, use one parameter if you want only

the MapEntry and two parameters if you want the key and the value separately.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=136

MAP CONVENIENCE METHODS 137

Map’s find and findAll Methods

Groovy also adds the find() and findAll() methods to Map. Let’s take a

look at an example:

Download WorkingWithCollections/NavigatingMap.groovy

println "Looking for the first language with name greater than 3 characters"

entry = langs.find { language, author ->

language.size() > 3

}

println "Found $entry.key written by $entry.value"

The output from the previous code is as follows:

Looking for the first language with name greater than 3 characters

Found Java written by Gosling

The find() method accepts a closure that takes the key and value (again,

use a single parameter to receive a MapEntry). Similar to its counterpart

in ArrayList, it breaks from the iteration if the closure returns true. In

the previous example code, you’re finding the first language with more

than three characters in its name. The method returns null if the closure

never returns a true. Otherwise, it returns an instance of a matching

entry in the Map.

You can use the findAll() method to get all elements that match the

condition you’re looking for, as in the following example:

Download WorkingWithCollections/NavigatingMap.groovy

println "Looking for all languages with name greater than 3 characters"

selected = langs.findAll { language, author ->

language.size() > 3

}

selected.each { key, value ->

println "Found $key written by $value"

}

The output from the previous code is as follows:

Looking for all languages with name greater than 3 characters

Found Lisp written by McCarthy

Found Java written by Gosling

7.7 Map Convenience Methods

We’ll wrap up our discussion on collections in this section by looking at

a few convenience methods of Map.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=137

MAP CONVENIENCE METHODS 138

You saw how the find() method is useful to fetch an element that satis-

fied a given condition. However, instead of getting the element, if you’re

simply interested in determining whether any elements in the collection

satisfies some condition, you can use the any() method.

Let’s continue with the example of languages and authors from

Section 7.6, Iterating Over Map, on page 135. You can use the any()

method to determine whether any language name has a nonalphabetic

character:

Download WorkingWithCollections/NavigatingMap.groovy

print "Does any language name have a nonalphabetic character? "

println langs.any {language, author ->

language =~ "[^A-Za-z]"

}

With C++ among the key values, your code reports as shown here:

Does any language name have a nonalphabetic character? true

any() takes a closure with two parameters, just like the other methods

of Map we discussed. The closure in this example uses a regular expres-

sion comparison (see Section 6.5, Regular Expressions, on page 121) to

determine whether the language name has a nonalphabetic character.

While the method any() looks for at least one element of the Map to

satisfy the given condition (predicate), the method named every() checks

whether all elements satisfy the condition:

Download WorkingWithCollections/NavigatingMap.groovy

print "Do all language names have a nonalphabetic character? "

println langs.every {language, author ->

language =~ "[^A-Za-z]"

}

The output from the previous code is as follows:

Do all language names have a nonalphabetic character? false

If you want to group the elements of a map based on some criteria,

don’t bother iterating or looping through the map—groupBy() does that

for you. All you have to do is specify your criteria as a closure. Here’s

an example: friends refers to a map of some of my friends (many of my

friends share their first names). If I want to group my friends by their

first name, I can do that with just one call to groupBy(), as shown in the

following code. In the closure attached to groupBy(), I specify what I like

to group—in this example, I strip out the first name from the full name

and return it. In general, you can simply return the property you’re

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=138

MAP CONVENIENCE METHODS 139

interested in grouping by. For example, if I store my friend’s names in

a Person object with the properties firstName and lastName instead of a

simple String, I write the closure as { it.firstName }. In the following code,

groupByFirstname is a map with the first name as the key and an array

of full names as the value. Finally, I iterate over it and print the values.

Download WorkingWithCollections/NavigatingMap.groovy

friends = [briang = 'Brian Goetz', brians = 'Brian Sletten',

davidb = 'David Bock', davidg = 'David Geary',

scottd = 'Scott Davis', scottl = 'Scott Leberknight',

stuarth = 'Stuart Halloway']

groupByFirstName = friends.groupBy { it.split(' ')[0] }

groupByFirstName.each { firstName, buddies ->

println "$firstName : ${buddies.join(', ')}"

}

The output from the previous code is as follows:

David : David Bock, David Geary

Brian : Brian Goetz, Brian Sletten

Stuart : Stuart Halloway

Scott : Scott Davis, Scott Leberknight

One final convenience I’d like to mention is that Groovy uses Map for

named parameters. We discussed this in Section 3.2, JavaBeans, on

page 45. Also, you can see how you can use Maps to implement inter-

faces in Section 3.4, Implementing Interfaces, on page 51.

In this chapter, you saw the power of closures mixed into the Java

collections API. As you apply these concepts on your projects, you’ll find

that working with collections is easier and faster, your code is shorter,

and it’s fun. Yes, the Groovy way of using collection brings excitement

into what otherwise is a mundane task of traversing and manipulating

collections.

http://media.pragprog.com/titles/vslg/code/WorkingWithCollections/NavigatingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=139

Part II

Using Groovy

Chapter 8

Exploring the GDK
Groovy not only brings the strength of dynamic languages onto the

JVM, but it also enhances the good old JDK. So, when programming

with Groovy, you’re productive because you enjoy a better, lighter, and

fancier Java API.

Groovy enhances the JDK with convenience methods, quite a few of

which make extensive use of closures. This extension is called the

Groovy JDK or the GDK.1 The relationship between the JDK and the

GDK is shown in Figure 8.1, on the following page. The GDK sits on

top of the JDK, so when you pass objects between your Java code and

Groovy code, you are not dealing with any conversions. It’s the same

object on both sides of the languages when you’re within the same JVM.

However, what you see on the Groovy side is an object that looks hip,

thanks to the methods added by Groovy to make it convenient to use

and make you productive.

You’ll find extensions to several classes from the JDK. We discussed a

number of these in various chapters in this book. In this chapter, we’ll

focus on two areas—extensions to the java.lang.Object class and various

other extensions to popular classes.

8.1 Object Extensions

In this section, we’ll explore some additions to the mother of all classes,

the java.lang.Object class. In Chapter 7, Working with Collections, on

1. You can find details about the GDK enhancements at http://groovy.codehaus.org/

groovy-jdk.

http://groovy.codehaus.org/groovy-jdk
http://groovy.codehaus.org/groovy-jdk

OBJECT EXTENSIONS 142

Figure 8.1: The JDK and the GDK

page 124, you saw Groovy-added methods on Collections: each(), col-

lect(), find(), findAll(), any(), and every(). These are not only available on

Collections, but you can also use them on any object. This gives you a

consistent API to work with individual objects and collections alike—

one of the benefits elicited in the Composite pattern ([GHJV95]). There

are also other noncollections-related convenience methods that Groovy

has added to Object. I won’t go over all the methods added to Object

in this section—my objective is not to write a complete reference to the

GDK library. Instead, I’ll focus on methods that are likely to pique your

interest and those that you’ll find useful for your everyday tasks.

The dump and inspect Methods

If you’re curious about what makes an instance of your class, you can

easily find that at runtime using the dump() method:

Download ExploringGDK/ObjectExtensions.groovy

str = 'hello'

println str

println str.dump()

The output from the previous code is as follows:

hello

<java.lang.String@5e918d2 value=[h, e, l, l, o] offset=0 count=5 hash=99162322>

dump() lets you take a peek into an object. You can use it for debugging,

logging, and learning. It tells you about the class of the target instance,

its hash code, and its fields.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/ObjectExtensions.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=142

OBJECT EXTENSIONS 143

Groovy also adds another method, inspect(), to Object. This method is

intended to tell you what input would be needed to create an object.

If unimplemented on a class, it simply returns what toString() returns.

If your object takes extensive input, this method will help users of your

class figure out at runtime what input they should provide.

identity: The Context Method

There’s a nice feature in JavaScript and VBScript called with that allows

you to create a context. Any method called within the scope of with is

directed to the context object. The method identity()2 of Object in Groovy

provides the same capability. It accepts a closure as a parameter. Any

method call you make within the closure is automatically resolved to

the context object. Let’s take a look at an example:

Download ExploringGDK/Identity.groovy

lst = [1, 2]

lst.add(3)

lst.add(4)

println lst.size()

println lst.contains(2)

In the previous code you’re calling methods on lst, which refers to an

instance of ArrayList. There’s no implicit context, and you’re repeatedly

(redundantly) using the object reference lst. In Groovy, you can set a

context using the identity() method, so you can change the code to the

following:

Download ExploringGDK/Identity.groovy

lst = [1, 2]

lst.identity {

add(3)

add(4)

println size()

println contains(2)

}

The output from the previous code is as follows:

4

true

2. with() was introduced as a synonym to identity() in Groovy 1.5, so you can use them

interchangeably.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/Identity.groovy
http://media.pragprog.com/titles/vslg/code/ExploringGDK/Identity.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=143

OBJECT EXTENSIONS 144

How does the identity() method know to route calls within the closure to

the context object? The magic happens because of the delegate prop-

erty of the closure (for more information, see Section 5.8, Closure Del-

egation, on page 107). Let’s examine the delegate property along with

the this and owner properties within the closure attached to identity():

Download ExploringGDK/Identity.groovy

lst.identity {

println "this is ${this},"

println "owner is ${owner},"

println "delegate is ${delegate}."

}

The output from the previous code is as follows:

this is Identity@ce56f8,

owner is Identity@ce56f8,

delegate is [1, 2, 3, 4].

When you invoke the identity() method, it sets the delegate property of

the closure (actually it is done with the with() method of the Default-

GroovyMethods class, which is called by identity()) to the object on which

identity() is called. As discussed in Section 5.8, Closure Delegation, on

page 107, the delegate has dibs on methods that this doesn’t pick up.

Use the identity method if you need to call multiple methods on an

object. Take advantage of the context and reduce clutter. You’ll find this

method very useful when building DSLs. You can implement scriptlike

calls to be implicitly routed to your instance behind the scenes, as you’ll

learn in Chapter 18, Creating DSLs in Groovy, on page 277.

sleep

The sleep() method added to Object should be called soundSleep. It

ignores interrupts while sleeping for the given number of milliseconds

(approximately).

Let’s take a look at an example of the sleep() method:3

Download ExploringGDK/Sleep.groovy

thread = Thread.start {

println "Thread started"

startTime = System.nanoTime()

new Object().sleep(2000)

endTime = System.nanoTime()

println "Thread done in ${(endTime - startTime)/10**9} seconds"

}

3. I’m using the Groovy-added Thread.start() method here. It’s a convenient way to execute

a piece of code in a different thread.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/Identity.groovy
http://media.pragprog.com/titles/vslg/code/ExploringGDK/Sleep.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=144

OBJECT EXTENSIONS 145

new Object().sleep(100)

println "Let's interrupt that thread"

thread.interrupt()

thread.join()

The output is as follows:

Thread started

Let's interrupt that thread

Thread done in 2.000272 seconds

The difference between calling sleep() on Object and using the Java-

provided Thread.sleep() is that the former suppresses the Interrupted-

Exception. If you do care to be interrupted, you don’t have to endure

try-catch. Instead, in Groovy, you can use a variation of the previous

sleep() method that accepts a closure to handle the interruption:

Download ExploringGDK/Sleep.groovy

def playWithSleep(flag)

{

thread = Thread.start {

println "Thread started"

startTime = System.nanoTime()

new Object().sleep(2000) {

println "Interrupted... " + it

flag

}

endTime = System.nanoTime()

println "Thread done in ${(endTime - startTime)/10**9} seconds"

}

thread.interrupt()

thread.join()

}

playWithSleep(true)

playWithSleep(false)

The output from the previous code is as follows:

Thread started

Interrupted... java.lang.InterruptedException: sleep interrupted

Thread done in 0.00437 seconds

Thread started

Interrupted... java.lang.InterruptedException: sleep interrupted

Thread done in 1.999077 seconds

Within the interrupt handler, you can take any appropriate actions. If

you need to access the InterruptedException, it is available as a parameter

to your closure. If you return a false from within the closure, sleep()

will continue as if uninterrupted, as you can see in the second call to

playWithSleep() in the previous example.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/Sleep.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=145

OBJECT EXTENSIONS 146

Indirect Property Access

You know that Groovy already makes it easy to access properties. For

example, to get property miles of an instance car of a class Car, you

can simply call car.miles. However, this syntax is not helpful if you don’t

know the property name at coding time, such as if the property name

depends on user input and you don’t want to hard-code a branch for all

possible input. You can use the [] operator—the Groovy-added getAt()

method maps to this operator—to access properties dynamically. If you

use this operator on the left side of an assignment, then it maps to the

putAt() method. Let’s take a look at an example:

Download ExploringGDK/IndirectProperty.groovy

class Car

{

int miles, fuelLevel

}

car = new Car(fuelLevel: 80, miles: 25)

properties = ['miles', 'fuelLevel']

// the above list may be populated from some input or

// may come from a dynamic form in a web app

properties.each { name ->

println "$name = ${car[name]}"

}

car[properties[1]] = 100

println "fuelLevel now is ${car.fuelLevel}"

The output from the code previous is as follows:

miles = 25

fuelLevel = 80

fuelLevel now is 100

Here you’re accessing the miles and fuelLevel properties using the [] oper-

ator. You can use this approach if the names of properties are given to

you as input; you can dynamically create and populate web forms, for

example. You can easily write a higher-level function that takes a list

of property names4 and an instance and outputs the names and values

in XML, HTML, or any other format you desire.

4. To get a list of all the properties of an object, use its properties property, namely, the

getProperties() method.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/IndirectProperty.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=146

OTHER EXTENSIONS 147

Indirect Method Invoke

If the method name is given to you as a String and you want to call

that method, you know how to use reflection to do that—you have to

first fetch the Class metaobject from the instance, call getMethod() to get

the Method instance, and finally call the invoke() method on it. And, oh

yeah, don’t forget those exceptions you’ll be forced to handle.

No, you don’t have to do all that in Groovy. In Groovy, you need only

one line of code—just call the invokeMethod(). All objects support this

method in Groovy. Here’s an example:

Download ExploringGDK/IndirectMethod.groovy

class Person

{

def walk() { println "Walking..." }

def walk(int miles) { println "Walking $miles miles..." }

def walk(int miles, String where) { println "Walking $miles miles $where..." }

}

peter = new Person()

peter.invokeMethod("walk", null)

peter.invokeMethod("walk", 10)

peter.invokeMethod("walk", [2, 'uphill'] as Object[])

The output from the previous code is as follows:

Walking...

Walking 10 miles...

Walking 2 miles uphill...

So if you don’t know the method names at coding time but receive

the names at runtime, you can turn that into a dynamic call on your

instance with a single line of code, as shown in the previous example.

Groovy also provides getMetaClass() to get the metaclass object, which

is a key object that allows you to take advantage of dynamic capabilities

in Groovy, as you’ll see in later chapters.

8.2 Other Extensions

The GDK extensions go beyond the Object class. Several other JDK

classes and interfaces have been enhanced in the GDK. Again, the list

is vast, and my objective is not to create a comprehensive reference. So,

I will introduce only a small subset of extensions in this section. These

are the extensions that I think you’re likely to put to regular use.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/IndirectMethod.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=147

OTHER EXTENSIONS 148

Array Extensions

You can use the Range object as an index on all the array types5 like

int[], double[], and char[]. Here’s how you can access contiguous values

in an int array using the range of index:

Download ExploringGDK/Array.groovy

int[] arr = [1, 2, 3, 4, 5, 6]

println arr[2..4]

The output from the previous code is as follows:

[3, 4, 5]

You’re already familiar with a number of convenience methods that the

GDK added to Lists, Collections, and Maps. Refer to Chapter 7, Working

with Collections, on page 124 if you want to review them.

java.lang Extensions

One of the noticeable additions to the primitive type wrappers like Char-

acter, Integer, and so on, is the overloaded operator mapping methods.

These are the methods such as plus() for operator +, next() for operator

++, and so on. You’ll find these methods, operators I should say, useful

when creating DSLs.

Number (which Integer and Double extend) has picked up the iterator

methods upto() and downto(). It also has the step() method (see Sec-

tion 3.1, Ways to Loop, on page 39). These allow you to iterate over a

range of values easily.

You looked at a few examples to interact with system-level processes in

Section 3.1, A Quick Look at the GDK, on page 40. The Process class has

convenience methods to access the stdin, stdout, and stderr commands—

the out, in, and err properties, respectively. It also has the text property

that can give you the entire standard output or response from the pro-

cess. If you want to read the entire standard error in one shot, use

err.text on the process instance. You can use the << operator to pipe

into a process.6 Here’s an example to illustrate communicating with a

5. For the syntax for creating arrays, see Section 3.8, Different Syntax for Creating Prim-

itive Arrays, on page 74.
6. A pipe (|) on Unix-like systems allows you to chain the output from one process into

the input of another process.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/Array.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=148

OTHER EXTENSIONS 149

process—the wc program, which is a popular utility on Unix-like sys-

tems that prints to the standard output the number of words, lines,

and characters it finds in its standard input:

Download ExploringGDK/UsingProcess.groovy

process = "wc".execute()

process.out.withWriter {

// Send input to process

it << "Let the World know...\n"

it << "Groovy Rocks!\n"

}

// Read output from process

println process.in.text

// or

//println process.text

The output from the previous code is the result returned by wc—two

lines, six words, and thirty-six characters:

2 6 36

In this code, first you obtain an instance of the process by calling String’s

execute() method. You want to write to wc’s standard input, so you

need an OutputStream from our program. You can obtain that from the

process by calling the out property.

To write content, you can use the << operator. However, once you write

to the stream, you want to flush and close it. You can handle both with

one method: withWriter(). This method attaches an OutputStreamWriter to

the OutputStream and hands it to the closure. When you return from

the closure, it flushes and closes the stream automatically.7 Try imple-

menting the previous code using Java, and you’ll truly appreciate not

only the time savings but also the elegance Groovy provides.

If you want to send command-line parameters to the process, you have

two options. You can format it as one string or create a String array

of parameters. String[] supports the execute() method as well; the first

element is treated as the command to execute, and the remaining ele-

ments are considered as command-line arguments to that command.

Instead, you can also use the execute() method of List.

7. See Section 5.4, Closure and Resource Cleanup, on page 98.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/UsingProcess.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=149

OTHER EXTENSIONS 150

Here’s an example of passing command-line parameters to the groovy

command:

Download ExploringGDK/ProcessParameters.groovy

String[] command = ['groovy', '-e', 'print "Groovy!"']

println "Calling ${command.join(' ')}"

println command.execute().text

The output from the previous code is as follows:

Calling groovy -e print "Groovy!"

Groovy!

You can start a process, send parameters, and interact with the process

fairly easily in Groovy. It takes only a couple of lines of code.

If you have to create threads and assign tasks to execute in those sep-

arate threads, Groovy will save you quite a bit of typing. You can start

a Thread and provide it a closure that will be run in a separate thread

using the start() method. If you want that thread to be daemon thread,8

use the startDaemon() method instead. Let’s take a look at an example

that shows these two methods in action:

Download ExploringGDK/ThreadStart.groovy

def printThreadInfo(msg)

{

def currentThread = Thread.currentThread()

println "$msg Thread is ${currentThread}. Daemon? ${currentThread.isDaemon()}"

}

printThreadInfo 'Main'

Thread.start {

printThreadInfo "Started"

sleep(3000) { println "Interrupted" }

println "Finished Started"

}

sleep(1000)

Thread.startDaemon {

printThreadInfo "Started Daemon"

sleep(5000) { println "Interrupted" }

println "Finished Started Daemon" // Will not get here

}

8. A daemon thread quits if there are no active nondaemon threads currently running—

kind of like employees who work only when the boss is around.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/ProcessParameters.groovy
http://media.pragprog.com/titles/vslg/code/ExploringGDK/ThreadStart.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=150

OTHER EXTENSIONS 151

The output from the previous code is as follows:

Main Thread is Thread[main,5,main]. Daemon? false

Started Thread is Thread[Thread-1,5,main]. Daemon? false

Started Daemon Thread is Thread[Thread-2,5,main]. Daemon? true

Finished Started

The daemon thread in the previous example was aborted as soon as the

main thread and the nondaemon thread you created quit. You can see

that to create threads in Groovy, you don’t need to work with instances

of Thread or Runnable. It’s very simple and easy to get going with thread

creation.

java.io Extensions

A lot of methods have been added to the File class in the java.io package.

It has methods such as eachFile() and eachDir() (and variations of these)

that accept closures and provide easy navigation or iteration through

directories and files.

Suppose you want to read the contents of a file. Here’s the Java code

for that:

// Java code

import java.io.*;

public class ReadFile

{

public static void main(String[] args)

{

try

{

BufferedReader reader = new BufferedReader(

new FileReader("thoreau.txt"));

String line = null;

while((line = reader.readLine()) != null)

{

System.out.println(line);

}

}

catch(FileNotFoundException ex)

{

ex.printStackTrace();

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=151

OTHER EXTENSIONS 152

That’s quite an effort to read a file. Groovy makes this much simpler.

Groovy has added a text property to BufferedReader, InputStream, and File,

so you can read the entire content of the reader into a String. This is

useful if you want to take the entire output for processing or printing.

Here’s the previous code rewritten in Groovy:

Download ExploringGDK/ReadFile.groovy

println new File('thoreau.txt').text

The output from the previous code—the content of my file thoreau.txt—is

as follows:

"I went to the woods because I wished to live deliberately,

to front only the essential facts of life, and see if I could

not learn what it had to teach, and not, when I came to die,

to discover that I had not lived..."

- Henry David Thoreau

Instead of reading the entire file in one shot, if you want to read and

process one line at a time, use the eachLine() method, which calls a

closure for each line of text read:

Download ExploringGDK/ReadFile.groovy

new File('thoreau.txt').eachLine { line ->

println line // or do whatever you like with that line here

}

If you want to fetch only those lines of text that meet a certain condition,

you can use filterLine(), as shown here:

Download ExploringGDK/ReadFile.groovy

println new File('thoreau.txt').filterLine { it =~ /life/ }

The output from the previous code is as follows:

to front only the essential facts of life, and see if I could

You filtered only the line(s) in the input file that contained the word

“life.”

If you want to automatically flush and close an input stream when

you’re done, you can use the withStream() method. This method calls

the closure it accepts as a parameter and sends the instance of Input-

Stream as a parameter. It then flushes and closes the stream as soon

as you return from the closure. The Writer has a similar method named

withWriter(); you saw an example of this earlier.

The withReader() method of InputStream creates a BufferedReader that’s

attached to the input stream and sends it to the closure that it accepts

http://media.pragprog.com/titles/vslg/code/ExploringGDK/ReadFile.groovy
http://media.pragprog.com/titles/vslg/code/ExploringGDK/ReadFile.groovy
http://media.pragprog.com/titles/vslg/code/ExploringGDK/ReadFile.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=152

OTHER EXTENSIONS 153

as a parameter. You can also obtain a new instance of BufferedReader by

calling the newReader() method.

You can iterate over the stream of input in InputStream and DataIn-

putStream using an Iterator you obtain by calling the iterator() method.

Talking about iterating, you can conveniently iterate over objects in an

ObjectInputStream as well.

If you want to use a Reader instead, the convenience methods added to

InputStream are still available on it.

You can easily write contents to a file or stream in Groovy. The Output-

Stream, ObjectOutputStream, and Writer classes have received a face-lift

via the leftShift() method (the << operator). The following code example

uses that operator to write to a file:

Download ExploringGDK/ShiftOperator.groovy

new File("output.txt").withWriter{ file ->

file << "some data..."

}

There are several other extensions to classes in the java.io package to

make your life easier and coding time shorter.

java.util Extensions

We discussed Groovy extensions to the collection classes in Chapter 7,

Working with Collections, on page 124. In this section, we’ll check out a

few other extensions to classes in the java.util package.

List, Set, SortedMap, and SortedSet have gained the method asImmutable()

to obtain an immutable instance of their respective instances. They also

have a method asSynchronized() to create an instance that is thread-safe.

The Iterator supports the inject() method we discussed in Section 7.4,

Collections’ Convenience Methods, on page 130.

A runAfter() method has been added to the java.util.Timer class. The syntax

is easier to use because this method accepts a closure that will run after

a given delay in milliseconds.

As you learned in this chapter, Groovy adds a number of methods at

the java.lang.Object level. There are methods that allow you to peek into

an object for debugging, logging, or informational purposes. You can

also use methods that allow you to treat a single object and a collection

of objects using a consistent interface, such as using the Composite

pattern.

http://media.pragprog.com/titles/vslg/code/ExploringGDK/ShiftOperator.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=153

OTHER EXTENSIONS 154

Object also supports methods for metaprogramming—to dynamically

access properties and invoke methods. The higher level of abstraction

that these methods have collectively built reduces your application code

size and the time you need for routine tasks.

And then there are specialized methods that you can use on different

classes—Groovy enhances the API for several classes and interfaces—

Matcher, Writer, Reader, List, Map, Socket...the list goes on. In Groovy 1.5

the GDK has extensions for more than fifty-eight JDK classes and inter-

faces. The GDK is far too large for us to cover entirely in this book. Visit

http://groovy.codehaus.org/groovy-jdk for a comprehensive and updated

list of the GDK API.

When you’re programming in Groovy, you need to refer to both the

JDK and the GDK. If you don’t find what you’re looking for in the JDK,

remember to check the GDK to see whether it supports the feature.

http://groovy.codehaus.org/groovy-jdk
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=154

Chapter 9

Working with XML
Working with XML can be so tedious, can’t it? Working with traditional

Java APIs and libraries to create and parse XML documents tends to

lower my spirits. And navigating the document hierarchy using the

DOM API is one sure way to drive me insane.

Groovy brings relief to both parsing and creating XML documents. You

already saw a few ways to create XML documents. We’ll revisit that topic

in this chapter and look at Groovy facilities for parsing XML documents.

9.1 Parsing XML

You can use the Java-based parsing approaches and tools you are al-

ready familiar with in Groovy. Use them if you have some special need

or reasons to depend on the older APIs or have legacy code that already

uses them. If you have working Java code to parse your XML docu-

ments, reuse those readily in Groovy. Groovy does not force you to

duplicate your efforts.

However, if you’re creating new code to parse XML, you can benefit from

the Groovy facilities.

In this section, we’ll focus on Groovy’s support for parsing XML. Groovy

parsers are fairly powerful, convenient to use, and support namespaces

as well.

PARSING XML 156

For the examples in the rest of this chapter, you’ll work with an XML

document (shown next) with a list of languages and authors:

Download WorkingWithXML/languages.xml

<languages>

<language name="C++">

<author>Stroustrup</author>

</language>

<language name="Java">

<author>Gosling</author>

</language>

<language name="Lisp">

<author>McCarthy</author>

</language>

<language name="Modula-2">

<author>Wirth</author>

</language>

<language name="Oberon-2">

<author>Wirth</author>

</language>

<language name="Pascal">

<author>Wirth</author>

</language>

</languages>

Using DOMCategory

Groovy categories allow you to define dynamic methods on classes. I’ll

discuss categories in detail in Section 14.1, Injecting Methods Using Cat-

egories, on page 203. Groovy provides a category for working with the

DOM—DOMCategory. Groovy simplifies the DOM API by adding conve-

nience methods.

DOMCategory allows you to navigate the DOM structure using GPath-

like notation.

You can access all child elements simply using the child name. For

example, instead of calling getElementsByTagName(’name’), use the prop-

erty name to get it, as in rootElement.language. That is, given the root

element, languages, you can obtain all the language elements by sim-

ply calling rootElement.language. The rootElement can be obtained using

a DOM parser; in the following example, you’ll use the DOMBuilder’s

parse() method to get it.

You can obtain the value for an attribute by placing an @ before the

attribute name, as in language.@name.

http://media.pragprog.com/titles/vslg/code/WorkingWithXML/languages.xml
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=156

PARSING XML 157

What’s GPath?

Much like how XPath allows you to navigate the hierarchy of an
XML document, GPath allows you to navigate the hierarchy of
objects (POJOs and POGOs) and XML—you can traverse the
hierarchy using the . (dot) notation. In the case of objects, for
example, car.engine.power accesses the engine property of Car

using getEngine() and then accesses its power property using
the getPower() method. In the case of an XML document, you
obtained the child element power of the element engine, which
in turn is a child element of an element car. To access the year
attribute of a car, use car.’@year’ (or car.@year). The @ symbol
allows you to traverse to an attribute instead of a child element.

In the following code, you use DOMCategory to fetch language names

and authors from the document:

Download WorkingWithXML/UsingDOMCategory.groovy

document = groovy.xml.DOMBuilder.parse(new FileReader('languages.xml'))

rootElement = document.documentElement

use(groovy.xml.dom.DOMCategory)

{

println "Languages and authors"

languages = rootElement.language

languages.each { language ->

println "${language.'@name'} authored by ${language.author[0].text()}"

}

def languagesByAuthor = { authorName ->

languages.findAll { it.author[0].text() == authorName }.collect {

it.'@name' }.join(', ')

}

println "Languages by Wirth:" + languagesByAuthor('Wirth')

}

The output from the previous code is as follows:

Languages and authors

C++ authored by Stroustrup

Java authored by Gosling

Lisp authored by McCarthy

Modula-2 authored by Wirth

http://media.pragprog.com/titles/vslg/code/WorkingWithXML/UsingDOMCategory.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=157

PARSING XML 158

Oberon-2 authored by Wirth

Pascal authored by Wirth

Languages by Wirth:Modula-2, Oberon-2, Pascal

DOMCategory is useful for parsing an XML document using the DOM

API with the convenience of GPath queries and Groovy’s dynamic ele-

gance mixed in.

To use the DOMCategory, you must place the code within the use()

block. The other two approaches you’ll see in this chapter don’t have

that restriction. In the previous example, you extracted the desired

details from the document using the GPath syntax. You also wrote a

custom method or filter to get only those languages written by Wirth.

Using XMLParser

The class groovy.util.XMLParser exploits the dynamic tying and metapro-

gramming capabilities of Groovy. You can access the members of your

document directly by name. For example, you can access an author’s

name using it.author[0].

Let’s use the XMLParser to fetch the desired data from the language’s

XML document:

Download WorkingWithXML/UsingXMLParser.groovy

languages = new XmlParser().parse('languages.xml')

println "Languages and authors"

languages.each {

println "${it.@name} authored by ${it.author[0].text()}"

}

def languagesByAuthor = { authorName ->

languages.findAll { it.author[0].text() == authorName }.collect {

it.@name }.join(', ')

}

println "Languages by Wirth:" + languagesByAuthor('Wirth')

The code is much like the example you saw in Section 9.1, Using DOM-

Category, on page 156. The main difference is the absence of the use()

block. XMLParser has added the convenience of iterators to the elements,

so you can navigate easily using methods such as each(), collect(),

find(), and so on.

http://media.pragprog.com/titles/vslg/code/WorkingWithXML/UsingXMLParser.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=158

PARSING XML 159

There are a few downsides to using XMLParser, which may be a con-

cern to you depending on your needs. It does not preserve the XML

InfoSet. It ignores the XML comments and processing instructions in

your document. The convenience it provides makes it a great tool for

most common processing needs. If you have other specific needs, you

have to explore more traditional parsers.

Using XMLSlurper

For large document sizes, the memory usage of XMLParser might become

prohibitive. The class XMLSlurper comes to rescue in these cases. It is

similar to XMLParser in usage. The following code is almost the same as

the code in Section 9.1, Using XMLParser, on the preceding page:

Download WorkingWithXML/UsingXMLSlurper.groovy

languages = new XmlSlurper().parse('languages.xml')

println "Languages and authors"

languages.language.each {

println "${it.@name} authored by ${it.author[0].text()}"

}

def languagesByAuthor = { authorName ->

languages.language.findAll { it.author[0].text() == authorName }.collect {

it.@name }.join(', ')

}

println "Languages by Wirth:" + languagesByAuthor('Wirth')

You can parse XML documents with namespaces in it as well. Names-

paces remind me of an incident. I got a call from a company in Malaysia

interested in training that involved extensive coding to emphasize test-

driven development. So, I asked, in the middle of the conversation, what

language would I be using? After a pause, the gentleman said reluc-

tantly, “English, of course. Everyone on my team speaks English well.”

What I had actually meant was “What computer language would I be

using?” This is an example of contexts and confusion in daily conversa-

tions. XML documents have the same issue, and namespaces can help

you deal with name collisions.

Remember that namespaces are not URLs, but they are required to be

unique. Also, the prefixes you use for namespaces in your XML docu-

ment are not unique. You can make them up as you please with some

naming restrictions. So, to refer to a namespace in your query, you

need to associate prefix to namespaces. You can do that using the

http://media.pragprog.com/titles/vslg/code/WorkingWithXML/UsingXMLSlurper.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=159

CREATING XML 160

declareNamespaces() method, which takes a map of prefixes as keys

and namespaces as values. Once you define the prefixes, your GPath

queries can contain prefixes for names as well. element.name will return

all child elements with name, independent of the namespace; however,

element.’ns:name’ will return only elements with the namespace that ns

is associated with. Let’s look at an example. Suppose you have an XML

document with names of computer and natural languages, as shown

here:

<languages xmlns:computer="Computer" xmlns:natural="Natural">

<computer:language name="Java"/>

<computer:language name="Groovy"/>

<computer:language name="Erlang"/>

<natural:language name="English"/>

<natural:language name="German"/>

<natural:language name="French"/>

</languages>

The element name language falls into either a “Computer” namespace

or a “Natural” namespace. The following code shows how to fetch all

language names and also only languages that are “Natural”:

Download WorkingWithXML/UsingXMLSlurperWithNS.groovy

languages = new XmlSlurper().parse(

'computerAndNaturalLanguages.xml').declareNamespace(human: 'Natural')

print "Languages: "

println languages.language.collect { it.@name }.join(', ')

print "Natural languages: "

println languages.'human:language'.collect { it.@name }.join(', ')

The output from this code is as follows:

Download WorkingWithXML/UsingXMLSlurperWithNS.output

Languages: Java, Groovy, Erlang, English, German, French

Natural languages: English, German, French

For large XML documents, you’d want to use the XMLSlurper. It performs

a lazy evaluation, so it’s kind on memory usage and has low overhead.

9.2 Creating XML

In this section, I’ll summarize different ways to create XML documents.

We discuss these topics in depth in different chapters in this book

where you’ll see more detailed code examples.

http://media.pragprog.com/titles/vslg/code/WorkingWithXML/UsingXMLSlurperWithNS.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithXML/UsingXMLSlurperWithNS.output
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=160

CREATING XML 161

You can use the full power of Java APIs to generate XML. If you have

a particular favorite Java-based XML processor such as Xerces (http://

xerces.apache.org/xerces-j), for example, you can use it with Groovy as

well. This might be a good approach if you already have working code

in Java to create XML documents in a specific format and want to use

it in your Groovy projects.

If you want to create an XML document using a pure-Groovy approach,

you can use GString’s ability to embed expressions into a string along

with Groovy’s facility for creating multiline strings. I find this facility

useful for creating small XML fragments that I might need in code and

tests. Here’s a quick example (you can refer to Section 6.3, Multiline

String, on page 118 for more details):

Download WorkingWithStrings/CreateXML.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

content = ''

langs.each {language, author ->

fragment = """

<language name="${language}">

<author>${author}</author>

</language>

"""

content += fragment

}

xml = "<languages>${content}</languages>"

println xml

Here’s the output:

<languages>

<language name="C++">

<author>Stroustrup</author>

</language>

<language name="Java">

<author>Gosling</author>

</language>

<language name="Lisp">

<author>McCarthy</author>

</language>

</languages>

http://xerces.apache.org/xerces-j
http://xerces.apache.org/xerces-j
http://media.pragprog.com/titles/vslg/code/WorkingWithStrings/CreateXML.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=161

CREATING XML 162

Alternately, you can use the MarkupBuilder or StreamingMarkupBuilder to

create XML-formatted output of data from an arbitrary source. This

would be the desired approach in Groovy applications, because the

convenience provided by the builders make it easy to create XML doc-

uments. You don’t have to mess with complex APIs or string manipula-

tion; it’s all plain simple Groovy. Again, here’s a quick example (refer to

the discussion in Section 17.1, Building XML, on page 260 for details

on using both the MarkupBuilder and StreamingMarkupBuilder):

Download UsingBuilders/BuildUsingStreamingBuilder.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

xmlDocument = new groovy.xml.StreamingMarkupBuilder().bind {

mkp.xmlDeclaration()

mkp.declareNamespace(computer: "Computer")

languages {

comment << "Created using StreamingMarkupBuilder"

langs.each { key, value ->

computer.language(name: key) {

author (value)

}

}

}

}

println xmlDocument

The output from the previous code is as follows:

<?xml version="1.0"?>

<languages xmlns:computer='Computer'>

<!--Created using StreamingMarkupBuilder-->

<computer:language name='C++'>

<author>Stroustrup</author>

</computer:language>

<computer:language name='Java'>

<author>Gosling</author>

</computer:language>

<computer:language name='Lisp'>

<author>McCarthy</author>

</computer:language>

</languages>

If your data resides in a database or a Microsoft Excel file, you can

mix that with the techniques you’ll look at in Chapter 10, Working with

Databases, on page 164. Once you fetch the data from the database,

insert it into the document using any of the approaches we have

discussed.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/BuildUsingStreamingBuilder.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=162

CREATING XML 163

In this chapter, you saw how Groovy helps you parse XML documents.

Groovy can make working with XML bearable. If your users don’t like

maintaining XML configuration files (who does?), they can create and

maintain Groovy-based DSLs that you can transform to the XML for-

mats your underlying frameworks or libraries expect. If you are on the

receiving end of the XML documents, you can rely on Groovy to give you

an object representation of the XML data. Using regular Groovy syntax,

you make parsing XML easy and less painful.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=163

Chapter 10

Working with Databases
I have a remote database (located in some exotic place far away) that

I update a few times each week. I used to connect to the database

using the browser, but navigating the database that way was slow. I

considered creating a Java client program to let me update the database

quickly and easily.

But I never got around to creating it because such a program would

not easily support ad hoc queries, it would take time to develop, and

the task was not exciting—not much really new to learn in that exercise.

Then I came across Groovy SQL (GSQL). I found it very simple yet very

flexible to create queries and updates. One thing that excited me the

most was that I had more data than code in my script—that is a great

signal-to-noise ratio. Updating my database has since been a breeze,

and GSQL has given me a great amount of agility.1

GSQL is a wrapper around JDBC that provides a number of conve-

nience methods to access data. You can easily create SQL queries and

then use built-in iterators to traverse the results. The examples in this

chapter use MySQL; however, you can use any database that you can

access using JDBC. You’ll want to create one table named weather to

follow along with the examples in this chapter. The table contains the

names of some cities and temperature values.

1. See my blog entry related to this at http://tinyurl.com/327dmm.

http://tinyurl.com/327dmm

CONNECTING TO A DATABASE 165

Here is the script to create the database:

create database if not exists weatherinfo;

use weatherinfo;

drop table if exists weather;

create table weather (

city varchar(100) not null,

temperature integer not null

);

insert into weather (city, temperature) values ('Austin', 48);

insert into weather (city, temperature) values ('Baton Rouge', 57);

insert into weather (city, temperature) values ('Jackson', 50);

insert into weather (city, temperature) values ('Montgomery', 53);

insert into weather (city, temperature) values ('Phoenix', 67);

insert into weather (city, temperature) values ('Sacramento', 66);

insert into weather (city, temperature) values ('Santa Fe', 27);

insert into weather (city, temperature) values ('Tallahassee', 59);

I will walk you through various examples to access this database.

10.1 Connecting to a Database

To connect to a database, simply create an instance of groovy.sql.Sql

by calling the static method newInstance(). One version of this method

accepts the database URL, user ID, password, and database driver

name as parameters. If you already have a java.sql.Connection instance

or a java.sql.DataSource, then you can use one of the constructors for Sql

that accepts those instead of using newInstance().

You can obtain the information about the connection by calling the

getConnection() method (the connection property) of the Sql instance.

When you’re done, you can close the connection by calling the close()

method. Here is an example of connecting to the database I created for

this chapter:

Download WorkingWithDatabases/Weather.groovy

def sql = groovy.sql.Sql.newInstance('jdbc:mysql://localhost:3306/weatherinfo',

userid, password, 'com.mysql.jdbc.Driver')

println sql.connection.catalog

The previous code reports the name of the database, as shown here:

weatherinfo

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=165

DATABASE SELECT 166

10.2 Database Select

You can use the Sql object to conveniently iterate through data in a

table. Simply call the eachRow() method, provide it with a SQL query to

execute, and give it a closure to process each row of data, thusly:

Download WorkingWithDatabases/Weather.groovy

println "City Temperature"

sql.eachRow('SELECT * from weather') {

printf "%-20s%s\n", it.city, it[1]

}

The previous code produces the following output:

City Temperature

Austin 48

Baton Rouge 57

Jackson 50

Montgomery 53

Phoenix 67

Sacramento 66

Santa Fe 27

Tallahassee 59

You asked eachRow() to execute the SQL query on the weather table to

process all its rows. You then iterate (as the name each indicates) over

each row. There’s more grooviness here—the GroovyResultSet object that

eachRow() provides allows you to access the columns in the table either

directly by name (as in it.city) or using the index (as in it[1]).

In the previous example, you hard-coded the header for the output.

It would be nice to get this from the database instead. Another over-

loaded version of eachRow() will do that. It accepts two closures—one

for metadata and the other for data. The closure for metadata is called

only once after the execution of the SQL statement with an instance of

ResultSetMetaData, and the other closure is called once for each row in

the result. Let’s give that a try in the following code:

Download WorkingWithDatabases/Weather.groovy

processMeta = { metaData ->

metaData.columnCount.times { i ->

printf "%-21s", metaData.getColumnLabel(i+1)

}

println ""

}

sql.eachRow('SELECT * from weather', processMeta) {

printf "%-20s %s\n", it.city, it[1]

}

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=166

TRANSFORMING DATA TO XML 167

The output from the previous code is shown here:

city temperature

Austin 48

Baton Rouge 57

Jackson 50

Montgomery 53

Phoenix 67

Sacramento 66

Santa Fe 27

Tallahassee 59

If you want to process all the rows but don’t want to use an iterator, you

can use the rows() method on the Sql instance. It returns an instance of

ArrayList of result data, as shown here:

Download WorkingWithDatabases/Weather.groovy

rows = sql.rows('SELECT * from weather')

println "Weather info available for ${rows.size()} cites"

The previous code reports this:

Weather info available for 8 cites

Call the firstRow() method instead if you’re interested in getting only the

first row of result.

You can perform stored procedure calls using the call() methods of Sql.

The withStatement() method allows you to set up a closure that will be

called before the execution of queries. This is useful if you want to

intercept the SQL queries before execution so you can alter it or set

some properties.

10.3 Transforming Data to XML

You can get the data from the database and create different represen-

tations using Groovy builders. Here is an example that creates an XML

representation (see Section 17.1, Building XML, on page 260) of the data

in the weather table:

Download WorkingWithDatabases/Weather.groovy

bldr = new groovy.xml.MarkupBuilder()

bldr.weather {

sql.eachRow('SELECT * from weather') {

city(name: it.city, temperature: it.temperature)

}

}

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=167

USING DATASET 168

The XML output from the previous code is as follows:

Download WorkingWithDatabases/Weather.output

<weather>

<city name='Austin' temperature='48' />

<city name='Baton Rouge' temperature='57' />

<city name='Jackson' temperature='50' />

<city name='Montgomery' temperature='53' />

<city name='Phoenix' temperature='67' />

<city name='Sacramento' temperature='66' />

<city name='Santa Fe' temperature='27' />

<city name='Tallahassee' temperature='59' />

</weather>

With hardly any effort, Groovy and GSQL help you create an XML rep-

resentation of data from the database.

10.4 Using DataSet

In Section 10.2, Database Select, on page 166, you saw how to process

the results set obtained from executing a SELECT query. If you want to

receive only a filtered set of rows, such as only cities with temperature

values below 33, you can set up the query accordingly. Alternately, you

can receive the result as a groovy.sql.DataSet, which allows you to filter

data. Let’s examine this further.

The dataSet() method of the Sql class takes the name of a table and

returns a virtual proxy—it does not fetch the actual rows until you

iterate. You can then iterate over the rows using the each() method of

the DataSet (like the eachRow() method of Sql). In the following code,

however, you’ll use the findAll() method to filter the result to obtain only

cities with below-freezing temperature. When you invoke findAll(), the

DataSet is further refined with a specialized query based on the select

predicate you provide. The actual data is still not fetched until you call

the each() method on the resulting object. As a result, DataSet is highly

efficient, bringing only data that is actually selected.

Download WorkingWithDatabases/Weather.groovy

dataSet = sql.dataSet('weather')

citiesBelowFreezing = dataSet.findAll { it.temperature < 32 }

println "Cities below freezing:"

citiesBelowFreezing.each {

println it.city

}

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.output
http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=168

INSERTING AND UPDATING 169

The output from the code using the previous DataSet is as follows:

Cities below freezing:

Santa Fe

10.5 Inserting and Updating

You can use the DataSet object to add data in addition to using it to

filter data. The add() method accepts a map of data to create a row, as

shown in the following code:

Download WorkingWithDatabases/Weather.groovy

println "Number of cities : " + sql.rows('SELECT * from weather').size()

dataSet.add(city: 'Denver', temperature: 19)

println "Number of cities : " + sql.rows('SELECT * from weather').size()

The following output shows the effect of executing the previous code:

Number of cities : 8

Number of cities : 9

More traditionally, however, you can insert data using the Sql class’s

execute() or executeInsert() methods, as shown here:

Download WorkingWithDatabases/Weather.groovy

temperature = 50

sql.executeInsert("""INSERT INTO weather (city, temperature)

VALUES ('Oklahoma City', ${temperature})""")

println sql.firstRow(

"SELECT temperature from weather WHERE city='Oklahoma City'")

The output from the previous code is as follows:

["temperature":50]

You can perform updates and deletes in a similar way by issuing the

appropriate SQL commands.

10.6 Accessing Microsoft Excel

You can use the Sql class to access Microsoft Excel as well.2 In this

section, you’ll create a really simple example using things you’ve seen

already, except that you’ll be talking to Excel instead of MySQL. Let’s

first create an Excel file named weather.xlsx.3

2. If you want to interact with COM or ActiveX, take a look at Groovy’s Scriptom API

(http://groovy.codehaus.org/COM+Scripting).
3. Or weather.xls if you’re using older versions of Excel.

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Weather.groovy
http://groovy.codehaus.org/COM+Scripting
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=169

ACCESSING MICROSOFT EXCEL 170

Figure 10.1: An Excel file that you will access using GSQL

Create it in the c:\temp directory. The file will contain a worksheet with

the name temperatures (see the bottom of the worksheet) and the content

shown in Figure 10.1.

The code to access Excel is as follows:

Download WorkingWithDatabases/Excel/Windows/AccessExcel.groovy

def sql = groovy.sql.Sql.newInstance(

"""jdbc:odbc:Driver=

{Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb)};

DBQ=C:/temp/weather.xlsx;READONLY=false""", '', '')

println "City\t\tTemperature"

sql.eachRow('SELECT * FROM [temperatures$]') {

println "${it.city}\t\t${it.temperature}"

}

The output from the previous code is as follows:

City Temperature

Denver 19.0

Boston 12.0

New York 22.0

In the call to newInstance(), you’ve specified the driver for Excel and the

location of the Excel file. Instead of this, you could set up a DSN to the

Excel file and use the good old JDBC-ODBC driver bridge if you want.

http://media.pragprog.com/titles/vslg/code/WorkingWithDatabases/Excel/Windows/AccessExcel.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=170

ACCESSING MICROSOFT EXCEL 171

If you do that, you won’t put the file location in the code. Instead, you’ll

configure the DSN data source on Windows. The rest of the code to

execute the query and process the result is familiar.

In this chapter, you used GSQL to access relational data. You can ben-

efit from the simple yet powerful capability of this API for your data

access. It takes only a few lines of code and a few minutes before your

application can read and write real data in a relational database.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=171

Chapter 11

Working with Scripts and Classes
In any nontrivial application you’ll need to work with multiple classes

and scripts. I define a script as a file with Groovy code that’s not part of

a class and that you intend to execute or use without going through an

explicit compilation step1 (a script may also include classes). I define a

Groovy class as a file in which all code is contained within a class and

you can use it with or without an explicit compilation step. I’ll use the

term Groovy code to refer to both.

Groovy is by far the only language that seamlessly allows you to mix

and jointly compile both Groovy and Java code. In this chapter, I’ll

show you how to work with multiple Groovy scripts and both Java and

Groovy classes.

11.1 The Melting Pot of Java and Groovy

In your applications, you can implement a certain functionality in a

Java class, a Groovy class, or a Groovy script. Then, you can call

this functionality from within Java classes, Groovy classes, or Groovy

scripts. The various options to mix Java classes, Groovy classes, and

Groovy scripts is shown in Figure 11.1, on the next page.

To use Groovy classes from Groovy code, you don’t have to do anything.

It just works. Simply make sure the classes you depend on are in the

classpath either as source or as bytecode. To pull in a Groovy script

into your Groovy code, you can use GroovyShell. To use it from within

your Java classes, you can use the ScriptEngine API provided by JSR

1. Remember, all Groovy code is compiled in memory when you run the groovy command.

RUNNING GROOVY 173

Groovy Code Java Code

Java Class

Groovy Class

Groovy Script

It just works/
Joint-compilation

It just works

GroovyShell

It just works/
Joint-compilation

JSR-223

Figure 11.1: Ways to mix Java classes, Groovy classes, and scripts

223. If you want to use a Groovy class from within Java class, or vice

versa, you can take advantage of the Groovy joint-compilation facility.

All these are really simple, as you’ll see in the rest of this chapter.

First I will walk you through options for running Groovy. Then I will

discuss how to mix Groovy classes and scripts with both Java and

Groovy.

11.2 Running Groovy

There are two options to choose from to run your Groovy code. You can

use the groovy command on your source code. Then Groovy automati-

cally compiles your code in memory and executes it. You don’t have to

take an explicit step to compile it.

If you want to take a more traditional Javalike approach of explicitly

compiling code to create bytecode—the .class file—you can do that using

the groovyc compiler. To execute the bytecode, you’ll use the java com-

mand just like you’d execute your compiled Java code. The only dif-

ference is you need to have the groovy-all-1.5.4.jar file in the classpath.

Remember to add . for the current directory so it can find your classes

in the current directory. This JAR is located in the embeddable direc-

tory under your GROOVY_HOME. As an example, suppose you have the

following Groovy code in a file named Greet.groovy:

Download ClassesAndScripts/Greet.groovy

println (['Groovy', 'Rocks!'].join(' '))

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Greet.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=173

USING GROOVY CLASSES FROM GROOVY 174

If you want to run it, you can simply type groovy Greet. However, if

you want to explicitly compile this into Java bytecode, type groovyc

Greet.groovy. This will create a file named, as you’d expect, Greet.class.2

Use the -d option to specify a destination directory other than the cur-

rent directory. You can run the bytecode by typing this:3

java -classpath $GROOVY_HOME/embeddable/groovy-all-1.5.4.jar:. Greet

Here’s the output:

Groovy Rocks!

These steps show that you can compile and distribute your Groovy code

as bytecode much like you would compile and distribute your Java

code. You can release it as .class files or JAR it up. java sees no dif-

ference. You can use this approach to distribute your Groovy code as

bytecode along with rest of your bytecode, if your deployment settings

demand it.

11.3 Using Groovy Classes from Groovy

To use a Groovy class from within your Groovy code, you really don’t

have to do anything other than make sure the Groovy class is in your

classpath. You can use the Groovy source code as is, or you can compile

it into .class file and use it—it’s your choice. When your Groovy code

references a Groovy class, Groovy looks for the .groovy file with the

name of the class in your classpath; if it does not find it, it looks for a

.class file with the same name.

Suppose you have a Groovy source code Car.groovy, shown here, in a

directory named src:

Download ClassesAndScripts/src/Car.groovy

class Car

{

int year = 2008

int miles

String toString() { "Car: year: $year, miles: $miles" }

}

2. If your code has a package declaration, then the file will be created in the appropri-

ate directory following the Java package-directory format. Unlike Groovy classes, Groovy

scripts usually don’t have package declarations.
3. On Windows, use %GROOVY_HOME% instead of $GROOVY_HOME.

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/src/Car.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=174

USING GROOVY CLASSES FROM JAVA 175

Also, suppose you’re using this class in a file named useCar.groovy, as

shown here:

Download ClassesAndScripts/useCar.groovy

println new Car()

To use this class, type groovy -classpath src useCar. This will automatically

fetch the Car class, create an instance, and produce the following:

Car: year: 2008, miles: 0

If instead of source code you have bytecode for the Car, the steps are

the same—Groovy can readily use classes from .groovy or .class files.

11.4 Using Groovy Classes from Java

If the Groovy classes are precompiled, then you can use the .class files

or JARs readily in Java. Java sees no difference between the bytecode

from Java and Groovy; you’ll have to add the Groovy JAR (discussed

earlier) in your classpath much like how you’ll have JARs for Spring,

Hibernate, or other frameworks/libraries you use.

What if you have a Groovy source code instead of bytecode? Remem-

ber, when your Java class depends on other Java classes, javac will

compile any Java classes it deems necessary if it does not find their

bytecode. However, javac does not extend that kindness to Groovy. For-

tunately, groovyc supports joint compilation in Groovy 1.5. When you

compile Groovy code, it determines whether any Java classes need to

be compiled and takes care of compiling them. So, you can freely mix

Java source code and Groovy source code in a project. You don’t have

to go through separate compilation steps; instead, simply call groovyc.

To take advantage of joint compilation, you need to use the -j compila-

tion flag. Use the -J prefix to pass flags to the Java compiler. Here’s an

example. Suppose you have a Java class in a file named AJavaClass.java:

Download ClassesAndScripts/AJavaClass.java

//Java code

public class AJavaClass

{

{

System.out.println("Created Java Class");

}

public void sayHello() { System.out.println("hello"); }

}

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/useCar.groovy
http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/AJavaClass.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=175

USING JAVA CLASSES FROM GROOVY 176

You also have a Groovy script in a file UseJavaClass.groovy that uses that

Java class:

Download ClassesAndScripts/UseJavaClass.groovy

new AJavaClass().sayHello()

To compile these two files jointly, issue the command groovyc -j AJava-

Class.java UseJavaClass.groovy -Jsource 1.6. The option -Jsource 1.6 sends

the optional option source = 1.6 to the Java compiler. Examine the byte-

code generated using javap. You’ll notice that AJavaClass, as a reg-

ular Java class, extends java.lang.Object, while UseJavaClass extends

groovy.lang.Script.

Execute the code to confirm all went well. Try the following command:

java -classpath $GROOVY_HOME/embeddable/groovy-all-1.5.4.jar:. UseJavaClass

You should see the following output:

Created Java Class

hello

You can intermix Groovy and Java seamlessly in your project, making

Groovy a fantastic language for clean Java integration in your enter-

prise applications. You can focus on leveraging the advantages of each

language without having to fight any integration battles.

11.5 Using Java Classes from Groovy

Using Java classes in Groovy is simple and direct. If the Java classes

you want to use are part of the JDK, import the classes or their pack-

ages in Groovy just like in Java. Groovy imports by default a num-

ber of packages and classes (see Section 3.1, From Java to Groovy, on

page 37), so if the class you want to use is imported already (such as

java.util.Date), then just use it—no import is needed.

If you want to use one of your own Java classes, or classes that are

not part of the standard JDK, you can import them in Groovy, just

like you would in Java. Make sure to import the necessary packages

or classes, or refer to the classes by their fully qualified name. When

running groovy, specify the path to the .class files or JARs using the

-classpath option. If the class files are in same directory where your

Groovy code is, there’s no need to specify that directory using the class-

path option.

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/UseJavaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=176

USING JAVA CLASSES FROM GROOVY 177

Let’s look at an example. Say you have a Java class named GreetJava

that belongs to package com.agiledeveloper and has a static method

called sayHello(), as shown here:

Download ClassesAndScripts/GreetJava.java

// Java code

package com.agiledeveloper;

public class GreetJava

{

public static void sayHello()

{

System.out.println("Hello Java");

}

}

Now say you want to call this method from a Groovy script. First, com-

pile the Java class GreetJava so the class file GreetJava.class is located in

the directory ./com/agiledeveloper, where . is the current directory. Now

create a Groovy script in a file UseGreetJava.groovy with the following:

Download ClassesAndScripts/UseGreetJava.groovy

com.agiledeveloper.GreetJava.sayHello()

To run this script, simply type groovy UseGreetJava. The script runs with

no trouble and uses the sayHello() method in class GreetJava, as shown

in the following output:

Hello Java

If the class file is not under the current directory, you can still use it,

but you need to remember to set the classpath option. Assume that the

class file GreetJava.class is located under ~/release/com/agiledeveloper,

where ~ is your home directory.

To run the previously mentioned Groovy script (UseGreetJava.groovy),

use the following command:

groovy -classpath ~/release UseGreetJava

In this example, you compiled the Java code explicitly and then used

the bytecode with your Groovy script. If you intend to explicitly compile

your Groovy code, then you don’t have to use a separate compilation

step for Java and Groovy. Use the joint compilation facility instead.

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/GreetJava.java
http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/UseGreetJava.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=177

USING GROOVY SCRIPTS FROM GROOVY 178

11.6 Using Groovy Scripts from Groovy

You saw how easy it is to use Groovy classes in Groovy and Java. But,

what about Groovy scripts, those Groovy statements not necessarily

confined to a particular class in the source code? You can have those

scripts executed using GroovyShell class. Let’s take a look at an example:

Download ClassesAndScripts/Script1.groovy

println "Hello from Script1"

Here you have a file named Script1.groovy, and you want to execute that

script as part of executing another Groovy script, Script2.groovy, shown

here:

Download ClassesAndScripts/Script2.groovy

println "In Script2"

shell = new GroovyShell()

shell.evaluate(new File('Script1.groovy'))

// or simply

evaluate(new File('Script1.groovy'))

The output from the previous code is as follows:

In Script2

Hello from Script1

Hello from Script1

GroovyShell allows you to execute the evaluate() script in any file (or

string). That was easy. But (and there is always a “but”), what if you

want to pass some parameters to the scripts?

Download ClassesAndScripts/Script1a.groovy

println "Hello ${name}"

name = "Dan"

This script is expecting a variable name. You can use an instance of

Binding to bind variables, as shown here:

Download ClassesAndScripts/Script2a.groovy

println "In Script2"

name = "Venkat"

shell = new GroovyShell(binding)

result = shell.evaluate(new File('Script1a.groovy'))

println "Script1a returned : $result"

println "Hello $name"

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Script1.groovy
http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Script2.groovy
http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Script1a.groovy
http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Script2a.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=178

USING GROOVY SCRIPTS FROM GROOVY 179

In the calling script, you created a variable name (the same variable

name as in the called script). When you create the instance of Groovy-

Shell, pass the current Binding object to it (each script execution has one

of these). So, the called script can now use (read and set) variables that

the calling script knows about. The output of executing the previous

code is as follows:

In Script2

Hello Venkat

Script1a returned : Dan

Hello Dan

If the script returns a value, you can receive that from the evaluate()

method as the return value as well, as you saw in the previous example.

In the previous example, you passed the Binding of the calling script to

GroovyShell. If you don’t want your current binding to be affected and

want to keep the called script’s binding separate, simply create a new

instance of Binding, call setProperty() on it to set variable names and

values, and provide it as an argument when creating an instance of

GroovyShell, as shown here:

Download ClassesAndScripts/Script3.groovy

println "In Script3"

binding1 = new Binding()

binding1.setProperty('name', 'Venkat')

shell = new GroovyShell(binding1)

shell.evaluate(new File('Script1a.groovy'))

binding2 = new Binding()

binding2.setProperty('name', 'Dan')

shell.binding = binding2

shell.evaluate(new File('Script1a.groovy'))

The output from the previous code is as follows:

In Script3

Hello Venkat

Hello Dan

If you want to pass some command-line arguments to the script, use

the run() methods of the GroovyShell class instead of the evaluate()

methods.

GroovyShell allows you to easily load arbitrary scripts and execute them

as part of your Groovy code. This feature is very useful to not only run

routine tasks that may be saved in reusable scripts but also to build

and execute DSLs.

http://media.pragprog.com/titles/vslg/code/ClassesAndScripts/Script3.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=179

USING GROOVY SCRIPTS FROM JAVA 180

11.7 Using Groovy Scripts from Java

You saw so far how to mix Java and Groovy classes and also how to

mix Groovy classes and scripts within Groovy. You can compile your

Groovy script and use it with Java. However, if you want to use Groovy

script as is in Java, you may use JSR 223 for that.

JSR 223 bridges4 the JVM and scripting languages. It provides a stan-

dard way to interact between Java and several languages with imple-

mentations of the JSR 223 scripting engine API. You can download and

use JSR 223 with Java 5. It is included in Java 6.

JSR 223 currently works only with Groovy 1.0 and not with Groovy 1.5.

JSR 223 is an option more suited for other languages on the JVM than

for Groovy. Groovy’s ability to jointly compile Java and Groovy lessens

the need for something like JSR 223.

To call a (not precompiled) script from Java, use the script engine. You

can obtain it from ScriptEngineManager by calling the getEngineByName()

method. To execute your scripts from within your Java code, call its

eval() method. To use Groovy scripts, you need to make sure .../jsr223-

engines/groovy/build/groovy-engine.jar is in your classpath.

Let’s look at an example to execute a little Groovy script from within

Java:5

Download MixingJavaAndGroovy/CallingScript.java

// Java code

package com.agiledeveloper;

import javax.script.*;

public class CallingScript

{

public static void main(String[] args)

{

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("groovy");

System.out.println("Calling script from Java");

4. See the Java Scripting Programmer’s Guide in Appendix A, on page 291.
5. With Java comes the pleasure of handling exceptions I don’t care about. In the rest

of the examples in this chapter I won’t show you exception-handling code, but remember

to put it in when you code.

http://media.pragprog.com/titles/vslg/code/MixingJavaAndGroovy/CallingScript.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=180

USING GROOVY SCRIPTS FROM JAVA 181

try

{

engine.eval("println 'Hello from Groovy'");

}

catch(ScriptException ex)

{

System.out.println(ex);

}

}

}

The output from the previous code is as follows:

Calling script from Java

Hello from Groovy

In this example, your Groovy script is embedded in the string parameter

to the eval() method. Unlike this example, in reality, the script may not

be hard-coded. It may be in a file, an input stream, a dialog box, and

so on. In that case, you’ll find other overloaded versions of the eval()

method that take a Reader useful.

If the script returns any result to the calling Java program, you can

receive it from the Object return value of the eval() method.

Using this approach, you can call any arbitrary Groovy script from

within your Java application. If you want to pass some parameters to

the script—a Java object, created in Java but accessed in Groovy—you

can use Bindings.

Bindings are an implementation of Map<String, Object> that makes objects

available through a named value. ScriptContext allows the script engines

to connect to the Java objects such as Bindings in the hosting applica-

tion. You can either explicitly get access to these objects and interact

with them6 or simply use get() and put() on the ScriptEngine instance.

Let’s look now at an example of passing parameters to Groovy scripts

from Java:

Download MixingJavaAndGroovy/ParameterPassing.java

engine.put("name", "Venkat");

engine.eval("println \"Hello ${name} from Groovy\"; name += '!' ");

String name = (String) engine.get("name");

System.out.println("Back in Java:" + name);

6. If you want to execute the same script but with different set of values for the variables,

create different contexts and use them in a call to eval().

http://media.pragprog.com/titles/vslg/code/MixingJavaAndGroovy/ParameterPassing.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=181

EASE OF INTEGRATION 182

The output from the previous code is as follows:

Hello Venkat from Groovy

Back in Java:Venkat!

You’re sending a String object (with value Venkat) to the engine using

the put() method. You’ve given the name name for the variable binding.

Within the script, you use that variable (name). You can also set values

to it. This value can be obtained on the Java side by calling the get()

method on the engine.

JSR 223 provides the capability to call instance methods and also

functions not associated with any particular class. You can use the

invokeMethod() and invokeFunction() of the Invocable for that. If you plan

to use a script repeatedly, use the Compilable interface to avoid repeat-

edly recompiling the script.

11.8 Ease of Integration

You typically compile your Java code into .class files and JAR them up.

To use other Java classes, all you need is the .class files or the JARs that

contain those files to be in your classpath. Groovy pretty much expects

the same if you call into Java classes from Groovy. Groovy also makes

your life easy by providing you with joint compilation. This allows you

to not only use both Groovy and Java code side by side, but you can

also debug and work seamlessly with the two languages on the same

project.

You saw how easily you can mix and work with Groovy scripts as well.

You’ve seen examples of using Java classes from the JDK through-

out this book. In this chapter, you figured out how to use your own

Java classes and also Groovy classes with your application. There’s

no impediment to creating enterprise applications mixing Java and

Groovy.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=182

Part III

MOPping Groovy

Chapter 12

Exploring
Meta-Object Protocol (MOP)

In Java, you can use reflection at runtime to explore the structure of

your program, its classes, their methods, and the parameters they take.

However, you’re still restricted to the static structure you’ve created.

You can’t change the type of an object or let it acquire behavior dynam-

ically at runtime—at least not yet. Imagine if you could add methods

and behavior dynamically based on the current state of your applica-

tion or the inputs it receives. This would make your code flexible, and

you could be creative and productive. Well, you don’t have to imagine

that anymore—metaprogramming provides this functionality. Metapro-

gramming means writing programs that manipulate programs, includ-

ing itself. Dynamic languages such as Groovy provide this capability

through the Meta-Object Protocol (MOP). Creating classes, writing unit

tests, and introducing mock objects are all easy with Groovy’s MOP.

In Groovy, you can use MOP to invoke methods dynamically and also

synthesize classes and methods on the fly. This can give you the feeling

that your object favorably changed its class. Grails/GORM uses this

facility, for example, to synthesize methods for database queries. With

MOP you can create internal DSLs in Groovy.1 Groovy builders2 rely on

MOP as well. So, MOP is one of the most important concepts you’ll want

to learn and exploit. There are several concepts in MOP you’ll need to

investigate, and I’ll cover them across the next few chapters.

1. See Chapter 18, Creating DSLs in Groovy, on page 277.
2. See Chapter 17, Groovy Builders, on page 260.

GROOVY OBJECT 185

In this chapter, you will explore MOP by looking at what makes a

Groovy object and how Groovy resolves method calls for Java objects

and Groovy objects. You’ll then look at ways to query for methods and

properties and finally learn how to access objects dynamically.

Once you absorb the fundamentals in this chapter, you’ll be ready to

learn how to intercept method calls in Chapter 13, Intercepting Methods

Using MOP, on page 194. You’ll then see how to inject and synthesize

methods into classes at runtime in Chapter 14, MOP Method Injection

and Synthesis, on page 202. Finally, we’ll wrap up the discussion on

MOP in Chapter 15, MOPping Up, on page 224.

12.1 Groovy Object

The flexibility offered by Groovy can be confusing at first. So, if you

want to take full advantage of MOP, you need to first understand Groovy

objects and Groovy’s method handling.

In Section 1.3, Why Groovy?, on page 20, I should’ve said Groovy objects

are at least Java objects. In fact, Groovy objects have additional capa-

bilities. Groovy objects have more dynamic behavior than compiled

Java objects in Groovy. Also, Groovy handles method calls to Java

objects differently than to Groovy objects.

In a Groovy application you’ll work with three kinds of objects: POJOs,

POGOs, and Groovy interceptors. Plain Old Java Objects (POJOs) are

regular Java objects—you can create them using Java or other lan-

guages on the JVM. Plain Old Groovy Objects (POGOs) are classes writ-

ten in Groovy. They extend java.lang.Object but implement the groovy.

lang.GroovyObject interface. Groovy interceptors are Groovy objects that

extend GroovyInterceptable and have a method interception capability,

which we’ll soon discuss.

Groovy defines the GroovyObject interface as shown here:

//This is an excerpt of GroovyObject.java from Groovy source code

package groovy.lang;

public interface GroovyObject {

Object invokeMethod(String name, Object args);

Object getProperty(String property);

void setProperty(String property, Object newValue);

MetaClass getMetaClass();

void setMetaClass(MetaClass metaClass);

}

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=185

GROOVY OBJECT 186

MetaClassMetaClassRegistry

GroovyObject (POGO)Class (for POJO)

Map

Figure 12.1: POJOs, POGOs, and their MetaClass

invokeMethod(), getProperty(), and setProperty() make Groovy objects

highly dynamic. You can use them to work with methods and properties

created on the fly. getMetaClass() and setMetaClass() make it very easy

to create proxies to intercept and also inject methods on a POGO. Once

a class is loaded into the JVM, you can’t change the metaobject Class

for it. However, you can change its MetaClass by calling setMetaClass().

This gives you a feeling that the object changed its class at runtime.

The GroovyInterceptable interface is shown next. It’s a marker interface

that extends GroovyObject, and all method calls—both existing methods

and nonexisting methods—on an object that implements this interface

are intercepted by its invokeMethod().

//This is an excerpt of GroovyInterceptable.java from Groovy source code

package groovy.lang;

public interface GroovyInterceptable extends GroovyObject {

}

Groovy allows metaprogramming for POJOs and POGOs. For POJOs,

Groovy maintains a MetaClassRegistry class of MetaClasses, as shown in

Figure 12.1. POGOs, on the other hand, have a direct reference to their

MetaClass.

When you call a method, Groovy first checks whether the target object

is a POJO or a POGO. Groovy’s method handling is different for each of

these types.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=186

GROOVY OBJECT 187

class implements
GroovyInterceptable?

call it’s invokeMethod()

yesno

method exists
in MetaClass or

class?

noyes

Call interceptor or
original method

has a property
with method name?

that property
is of type Closure?

no

call closure’s call() method

has
methodMissing()?

call it’s methodMissing()

has
invokeMethod()?

call it’s invokeMethod()throw MissingMethodException()

noyes

yes

yesno

yesno

Figure 12.2: How Groovy handles method calls on a POGO

For a POJO, Groovy fetches its MetaClass from the applicationwide Meta-

ClassRegistry and delegates method invocation to it. So, any interceptors

or methods you’ve defined on its MetaClass take precedence over the

original method of the POJO.

For a POGO, Groovy takes a few extra steps, as illustrated in Fig-

ure 12.2. If the object implements GroovyInterceptable, then all calls

are routed to its invokeMethod(). Within this interceptor, you can route

calls to the actual method, if you want, allowing you to do AOP-like

operations.

If the POGO does not implement GroovyInterceptable, then Groovy looks

for the method first in the POGO’s MetaClass and then, if not found, on

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=187

GROOVY OBJECT 188

the POGO itself. If the POGO has no such method, Groovy looks for

a property or a field with the method name. If that property or field

is of type closure, Groovy invokes that in place of the method call. If

Groovy finds no such property or field, it makes two last attempts. If

the POGO has a method named methodMissing(), it calls it. Otherwise,

it calls the POGO’s invokeMethod(). If you’ve implemented this method

on your POGO, it is used. The default implementation of invokeMethod()

throws a MissingMethodException indicating the failure of the call.

Let’s see in code the mechanism discussed earlier. I’ve created classes

with different options to illustrate Groovy’s method handling. Study

the code, and see whether you can figure out which methods Groovy

executes in each of the cases (while walking through the following code,

refer to Figure 12.2, on the preceding page):

Download ExploringMOP/TestMethodInvocation.groovy

class TestMethodInvocation extends GroovyTestCase

{

void testMethodCallonPOJO()

{

def val = new Integer(3)

assertEquals "3", val.toString()

}

void testInterceptedMethodCallonPOJO()

{

def val = new Integer(3)

Integer.metaClass.toString = {-> 'intercepted' }

assertEquals "intercepted", val.toString()

}

void testInterceptableCalled()

{

def obj = new AnInterceptable()

assertEquals 'intercepted', obj.existingMethod()

assertEquals 'intercepted', obj.nonExistingMethod()

}

void testInterceptedExistingMethodCalled()

{

AGroovyObject.metaClass.existingMethod2 = {-> 'intercepted' }

def obj = new AGroovyObject()

assertEquals 'intercepted', obj.existingMethod2()

}

http://media.pragprog.com/titles/vslg/code/ExploringMOP/TestMethodInvocation.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=188

GROOVY OBJECT 189

void testUnInterceptedExistingMethodCalled()

{

def obj = new AGroovyObject()

assertEquals 'existingMethod', obj.existingMethod()

}

void testPropertyThatIsClosureCalled()

{

def obj = new AGroovyObject()

assertEquals 'closure called', obj.closureProp()

}

void testMethodMissingCalledOnlyForNonExistent()

{

def obj = new ClassWithInvokeAndMissingMethod()

assertEquals 'existingMethod', obj.existingMethod()

assertEquals 'missing called', obj.nonExistingMethod()

}

void testInvokeMethodCalledForOnlyNonExistent()

{

def obj = new ClassWithInvokeOnly()

assertEquals 'existingMethod', obj.existingMethod()

assertEquals 'invoke called', obj.nonExistingMethod()

}

void testMethodFailsOnNonExistent()

{

def obj = new TestMethodInvocation()

shouldFail (MissingMethodException) { obj.nonExistingMethod() }

}

}

class AnInterceptable implements GroovyInterceptable

{

def existingMethod() {}

def invokeMethod(String name, args) { 'intercepted' }

}

class AGroovyObject

{

def existingMethod() { 'existingMethod' }

def existingMethod2() { 'existingMethod2' }

def closureProp = { 'closure called' }

}

class ClassWithInvokeAndMissingMethod

{

def existingMethod() { 'existingMethod' }

def invokeMethod(String name, args) { 'invoke called' }

def methodMissing(String name, args) { 'missing called' }

}

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=189

QUERYING METHODS AND PROPERTIES 190

class ClassWithInvokeOnly

{

def existingMethod() { 'existingMethod' }

def invokeMethod(String name, args) { 'invoke called' }

}

The following output confirms that all the tests pass and Groovy han-

dles the method as discussed:

.........

Time: 0.047

OK (9 tests)

12.2 Querying Methods and Properties

You can find out at runtime if an object supports a certain behavior

by querying for its methods and properties. This is especially useful

for behavior you add dynamically at runtime. Groovy allows you to add

behavior not only to classes but also to select instances of a class.

Use getMetaMethod() of MetaObjectProtocol3 to get a metamethod. Use

getStaticMetaMethod() if you’re looking for a static method. Similarly,

use getMetaProperty() and getStaticMetaProperty() for a metaproperty. To

get a list of overloaded methods, use the plural form of these methods—

getMetaMethods() and getStaticMetaMethods(). If you want simply to

check for existence and not get the metamethod or metaproperty, use

hasProperty() to check for properties and respondsTo() for methods.

MetaMethod “represents a Method on a Java object a little like Method

except without using reflection to invoke the method,” says the Groovy

documentation. If you have the name of a method as a string, call get-

MetaMethod() and use the resulting MetaMethod to invoke your method,

as shown here:

Download ExploringMOP/UsingMetaMethod.groovy

str = "hello"

methodName = 'toUpperCase'

// Name may come from an input instead of being hard coded

methodOfInterest = str.metaClass.getMetaMethod(methodName)

println methodOfInterest.invoke(str)

3. MetaClass extends MetaObjectProtocol.

http://media.pragprog.com/titles/vslg/code/ExploringMOP/UsingMetaMethod.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=190

QUERYING METHODS AND PROPERTIES 191

Here’s the output from the previous code:

HELLO

You don’t have to know a method name at coding time. You can get it

as input and invoke the method dynamically.

To find out whether an object would respond to a method call, use

the respondsTo() method. It takes as parameters the instance you’re

querying, the name of the method you’re querying for, and an optional

comma-separated list of arguments intended for that method for which

you’re querying. It returns a list of MetaMethods for the matching meth-

ods. Let’s use that in an example:

Download ExploringMOP/UsingMetaMethod.groovy

print "Does String respond to toUpperCase()? "

println String.metaClass.respondsTo(str, 'toUpperCase')? 'yes' : 'no'

print "Does String respond to compareTo(String)? "

println String.metaClass.respondsTo(str, 'compareTo', "test")? 'yes' : 'no'

print "Does String respond to toUpperCase(int)? "

println String.metaClass.respondsTo(str, 'toUpperCase', 5)? 'yes' : 'no'

The output from the previous code is as follows:

Does String respond to toUpperCase()? yes

Does String respond to compareTo(String)? yes

Does String respond to toUpperCase(int)? no

getMetaMethod() and respondsTo() offer a nice convenience. You can sim-

ply send the arguments for a method you’re looking for to these meth-

ods. They don’t insist on an array of Class of the arguments like the get-

Method() method in Java reflection. Even better, if the method you’re

interested in does not take any parameters, don’t send any arguments,

not even a null. This is because the last parameter to these methods is

an array of parameters and is treated optional by Groovy.

There was one more magical thing taking place in the previous code:

you used Groovy’s special treatment of boolean (for more information,

see Section 3.5, Groovy boolean Evaluation, on page 55). The respond-

sTo() method returns a list of MetaMethods, and since you used the

result in a conditional statement (the ?: operator), Groovy returned true

if there were any methods and false otherwise. So, you don’t have to

explicitly check whether the size of the returned list is greater than

zero. Groovy does that for you.

http://media.pragprog.com/titles/vslg/code/ExploringMOP/UsingMetaMethod.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=191

DYNAMICALLY ACCESSING OBJECTS 192

12.3 Dynamically Accessing Objects

You’ve looked at ways to query for methods and properties and also at

ways to invoke them dynamically. There are other convenient ways to

access properties and call methods in Groovy. We will look at them now

using an instance of String as an example. Suppose you get the names of

properties and methods as input at runtime and want to access these

dynamically. Here are some ways to do that:

Download ExploringMOP/AccessingObject.groovy

def printInfo(obj)

{

// Assume user entered these values from standard input

usrRequestedProperty = 'bytes'

usrRequestedMethod = 'toUpperCase'

println obj[usrRequestedProperty]

//or

println obj."$usrRequestedProperty"

println obj."$usrRequestedMethod"()

//or

println obj.invokeMethod(usrRequestedMethod, null)

}

printInfo('hello')

Here’s the output from the previous code:

[104, 101, 108, 108, 111]

[104, 101, 108, 108, 111]

HELLO

HELLO

To invoke a property dynamically, you can use the index operator []

or use the dot notation followed by a GString evaluating the property

name, as shown in the previous code. To invoke a method, use the dot

notation or call the invokeMethod on the object, giving it the method

name and list of arguments (null in this case).

To iterate over all the properties of an object, use the properties property

(or the getProperties() method), as shown here:

Download ExploringMOP/AccessingObject.groovy

println "Properties of 'hello' are: "

'hello'.properties.each { println it }

http://media.pragprog.com/titles/vslg/code/ExploringMOP/AccessingObject.groovy
http://media.pragprog.com/titles/vslg/code/ExploringMOP/AccessingObject.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=192

DYNAMICALLY ACCESSING OBJECTS 193

The output is as follows:

Properties of 'hello' are:

empty=false

class=class java.lang.String

bytes=[B@74f2ff9b

In this chapter, you looked at the fundamentals for metaprogramming

in Groovy. With this foundation, you’re well equipped to explore MOP

further, understand how Groovy works, and take advantage of the MOP

concepts you’ll see in the next few chapters.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=193

Chapter 13

Intercepting Methods Using MOP
In Groovy you can implement Aspect-Oriented Programming (AOP)

[Lad03] like method interception or method advice fairly easily. There

are three types of advice. And, no, I’m not talking about the good advice,

the bad advice, and the unsolicited advice we receive every day. I’m

talking about the before, after, and around advice. The before advice

is code or a concern you’d want to execute before a certain operation.

After advice is executed after the execution of an operation. The around

advice, on the other hand, is executed instead of the intended opera-

tion. You can use MOP to implement these advices or interceptors. You

don’t need any complex tools or frameworks to do that in Groovy.

There are two approaches in Groovy to intercept method calls: either

let the object do it or let its MetaClass do it. If you want the object to

handle it, you need to implement the GroovyInterceptable interface. This

is not desirable if you’re not the author of the class, if the class is a

Java class, or if you want to introduce interception dynamically. The

second approach is better in these cases. You’ll look at both of these

approaches in this chapter.1

13.1 Intercepting Methods Using GroovyInterceptable

If a Groovy object implements GroovyInterceptable, then its invoke-

Method() is called when any of its methods are called—both existing

methods and nonexisting methods. That is, GroovyInterceptable’s invoke-

Method() hijacks all calls to the object.

1. There’s one more way to intercept methods, using categories, but I’ll defer discussing

that until Section 14.1, Injecting Methods Using Categories, on page 203.

INTERCEPTING METHODS USING GROOVYINTERCEPTABLE 195

invokeMethod, GroovyInterceptable, and GroovyObject

If a Groovy object implements the GroovyInterceptable inter-
face, then its invokeMethod() is called for all its method calls.
For other Groovy objects, it is called only for methods that are
nonexistent at the time of call. The exception to this is if you
implement invokeMethod() on its MetaClass. In that case, it is
again called always for both types of methods.

If you want to perform an around advice, simply implement your logic

in this method, and you’re done. However, if you want to implement

the before or after advice (or both), implement your before/after logic,

and route the call to the actual method at the appropriate time. To

route the call, use the MetaMethod for the method you can obtain from

the MetaClass (see Section 12.2, Querying Methods and Properties, on

page 190).

Suppose you want to run filters—such as validation, login verification,

logging, and so on—before you run some methods of a class. You don’t

want to manually edit each method to call the filters because such

effort is redundant, tedious, and error prone. You don’t want to ask

callers of your methods to invoke the filters either, because there’s no

guarantee they’ll call. Intercepting method calls to apply the filters is a

good option. It’ll be seamless and automatic.

Let’s look at an example2 in which you want to run check() on a Car

before any other method is executed. Here’s the code that uses Groovy-

Interceptable to achieve this:

Download InterceptingMethodsUsingMOP/InterceptingCalls.groovy

Line 1 class Car implements GroovyInterceptable
- {
- def check() { System.out.println "check called..." }
-

5 def start() { System.out.println "start called..." }
-

- def drive() { System.out.println "drive called..." }
-

2. I’ll use System.out.println() instead of println() in the examples in this chapter to avoid the

interception of informational print messages.

http://media.pragprog.com/titles/vslg/code/InterceptingMethodsUsingMOP/InterceptingCalls.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=195

INTERCEPTING METHODS USING GROOVYINTERCEPTABLE 196

- def invokeMethod(String name, args)
10 {

- System.out.print("Call to $name intercepted... ")
-

- if (name != 'check')
- {

15 System.out.print("running filter... ")
- Car.metaClass.getMetaMethod('check').invoke(this, null)
- }
-

- def validMethod = Car.metaClass.getMetaMethod(name, args)
20 if (validMethod != null)

- {
- validMethod.invoke(this, args)
- }
- else

25 {
- return Car.metaClass.invokeMethod(this, name, args)
- }
- }
- }

30

- car = new Car()
-

- car.start()
- car.drive()

35 car.check()
- try

- {
- car.speed()
- }

40 catch(Exception ex)
- {
- println ex
- }

Here’s the output from the previous code:

Call to start intercepted... running filter... check called...

start called...

Call to drive intercepted... running filter... check called...

drive called...

Call to check intercepted... check called...

Call to speed intercepted... running filter... check called...

groovy.lang.MissingMethodException:

No signature of method: Car.speed()

is applicable for argument types: () values: {}

Since Car implements GroovyInterceptable, all method calls on an in-

stance of Car are intercepted by its invokeMethod(). In that method, if

the method name is not check, you invoke the before filter, which is the

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=196

INTERCEPTING METHODS USING METACLASS 197

check() method. Determine whether the method called is a valid existing

method with the help of the MetaClass’s getMetaMethod(). If the method

is valid, call that method using the invoke() method of the MetaMethod,

as on line number 22.

If the method is not found, simply route the request to the MetaClass,

as on line number 26. This gives an opportunity for the method to be

synthesized dynamically, as you’ll see in Section 14.4, Method Synthe-

sis Using methodMissing, on page 214. If the method does not exist,

MetaClass’s invokeMethod() will throw a MissingMethodException.

In this example, you created a before advice. You can easily create

an after advice by placing the desired code after line number 22. If

you want to implement around advice, then eliminate the code on line

number 22.

13.2 Intercepting Methods Using MetaClass

You used GroovyInterceptable to intercept method calls in Section 13.1,

Intercepting Methods Using GroovyInterceptable, on page 194. That ap-

proach is good if you’re the author of the class whose methods you want

to intercept. However, that approach won’t work if you don’t have the

privileges to modify the class source code or if it is a Java class. Fur-

thermore, you may decide at runtime to start intercepting calls based

on some condition or application state. In these cases, intercept meth-

ods by implementing the invokeMethod() method on the MetaClass.

Let’s rewrite the example from Section 13.1, Intercepting Methods Using

GroovyInterceptable, on page 194, this time using the MetaClass. In this

version, the Car does not implement GroovyInterceptable and does not

have the invokeMethod():3

Download InterceptingMethodsUsingMOP/InterceptingCallsUsingMetaClass.groovy

Line 1 class Car
- {
- def check() { System.out.println "check called..." }
-

5 def start() { System.out.println "start called..." }
-

- def drive() { System.out.println "drive called..." }
- }
-

3. Even if it has invokeMethod(), the invokeMethod() you add to MetaClass takes precedence

if Car does not implement GroovyInterceptable.

http://media.pragprog.com/titles/vslg/code/InterceptingMethodsUsingMOP/InterceptingCallsUsingMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=197

INTERCEPTING METHODS USING METACLASS 198

10 Car.metaClass.invokeMethod = { String name, args ->
- System.out.print("Call to $name intercepted... ")
-

- if (name != 'check')
- {

15 System.out.print("running filter... ")
- Car.metaClass.getMetaMethod('check').invoke(delegate, null)
- }
-

- def validMethod = Car.metaClass.getMetaMethod(name, args)
20 if (validMethod != null)

- {
- validMethod.invoke(delegate, args)
- }
- else

25 {
- return Car.metaClass.invokeMissingMethod(delegate, name, args)
- }
- }
-

30

- car = new Car()
-

- car.start()
- car.drive()

35 car.check()
- try

- {
- car.speed()
- }

40 catch(Exception ex)
- {
- println ex
- }

The output from the previous code is as follows:

Call to start intercepted... running filter... check called...

start called...

Call to drive intercepted... running filter... check called...

drive called...

Call to check intercepted... check called...

Call to speed intercepted... running filter... check called...

groovy.lang.MissingMethodException:

No signature of method: Car.speed()

is applicable for argument types: () values: {}

On line number 10, you implemented, in the form of a closure, the

invokeMethod() and set it on Car’s MetaClass. This method will now inter-

cept all calls on an instance of Car. There are two differences between

this version of invokeMethod() and the version you implemented on

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=198

INTERCEPTING METHODS USING METACLASS 199

Car in Section 13.1, Intercepting Methods Using GroovyInterceptable,

on page 194. The first difference is the use of delegate instead of this

(see line number 16, for example). The delegate within the intercepting

closure refers to the target object whose methods are being intercepted.

The second difference is on line number 26, where you call invokeMissing-

Method() on the MetaClass instead of calling invokeMethod. Since you’re

already in invokeMethod(), you should not call it recursively here.

As I mentioned earlier, one nice aspect of using the MetaClass to inter-

cept calls is you can intercept calls on POJOs as well. To see this in

action, let’s intercept calls to methods on an Integer and perform AOP-

like advice:

Download InterceptingMethodsUsingMOP/InterceptInteger.groovy

Integer.metaClass.invokeMethod = { String name, args ->

System.out.println("Call to $name intercepted on $delegate... ")

def validMethod = Integer.metaClass.getMetaMethod(name, args)

if (validMethod == null)

{

return Integer.metaClass.invokeMissingMethod(delegate, name, args)

}

System.out.println("running pre-filter... ")

result = validMethod.invoke(delegate, args) // Remove this for around-advice

System.out.println("running post-filter... ")

result

}

println 5.floatValue()

println 5.intValue()

try

{

println 5.empty()

}

catch(Exception ex)

{

println ex

}

The output from the previous code is as follows:

Call to floatValue intercepted on 5...

running pre-filter...

running post-filter...

5.0

http://media.pragprog.com/titles/vslg/code/InterceptingMethodsUsingMOP/InterceptInteger.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=199

INTERCEPTING METHODS USING METACLASS 200

Call to intValue intercepted on 5...

running pre-filter...

running post-filter...

5

Call to empty intercepted on 5...

groovy.lang.MissingMethodException:

No signature of method: java.lang.Integer.empty()

is applicable for argument types: () values: {}

The invokeMethod() you added on the MetaClass of Integer intercepts

method calls on 5, an instance of Integer. To intercept calls on any

Object and not only Integers, add the interceptor to Object’s MetaClass.

If you’re interested in intercepting calls only to nonexistent methods,

then use methodMissing() instead of invokeMethod(). We’ll discuss this in

Chapter 14, MOP Method Injection and Synthesis, on page 202.

You can provide both invokeMethod() and methodMissing() on MetaClass.

invokeMethod() takes precedence over methodMissing(). However, by call-

ing invokeMissingMethod(), you’re letting methodMissing() handle nonex-

isting methods.

The ability to intercept method calls using MetaClass was influenced by

Grails. It was originally introduced in Grails4 and was later moved into

Groovy. Take a minute to examine the MetaClass that’s giving you so

much power:

Download InterceptingMethodsUsingMOP/ExamineMetaClass.groovy

println Integer.metaClass.getClass().name

The output from the previous code is as follows:

groovy.lang.ExpandoMetaClass

ExpandoMetaClass is an implementation of the MetaClass interface and is

one of the key classes responsible for implementing dynamic behavior

in Groovy. You can add methods to this class to inject behavior into

your class, and you can even specialize individual objects using this

class.

There is a gotcha here depending on ExpandoMetaClass. It is one among

different implementations of MetaClass. By default, Groovy currently

does not use ExpandoMetaClass. When you query for the metaClass, how-

ever, the default is replaced with an instance of ExpandoMetaClass.

4. See http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html.

http://media.pragprog.com/titles/vslg/code/InterceptingMethodsUsingMOP/ExamineMetaClass.groovy
http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=200

INTERCEPTING METHODS USING METACLASS 201

Here’s an example that shows this behavior:

Download InterceptingMethodsUsingMOP/MetaClassUsed.groovy

class MyClass {}

println "MetaClass of 2 is " + 2.metaClass.getClass().name

println "MetaClass of Integer is " + Integer.metaClass.getClass().name

println "MetaClass of 2 now is " + 2.metaClass.getClass().name

obj1 = new MyClass()

println "MetaClass of obj1 is " + obj1.metaClass.getClass().name

println "MetaClass of MyClass is " + MyClass.metaClass.getClass().name

println "MetaClass of obj1 still is " + obj1.metaClass.getClass().name

obj2 = new MyClass()

println "MetaClass of obj2 created later is " + obj2.metaClass.getClass().name

The output from the previous code is as follows:

MetaClass of 2 is groovy.lang.MetaClassImpl

MetaClass of Integer is groovy.lang.ExpandoMetaClass

MetaClass of 2 now is groovy.lang.ExpandoMetaClass

MetaClass of obj1 is groovy.lang.MetaClassImpl

MetaClass of MyClass is groovy.lang.ExpandoMetaClass

MetaClass of obj1 still is groovy.lang.MetaClassImpl

MetaClass of obj2 created later is groovy.lang.ExpandoMetaClass

To begin with, the metaclass of Integer was an instance of MetaClas-

sImpl. When you query for the metaClass property, it is replaced with

an instance of ExpandoMetaClass. For your own Groovy classes, the

MetaClass used for instances created before you query for metaClass on

your class is different from the instances created after you query.5 This

behavior has caused some surprises when working with metaprogram-

ming.6 It would be nice if Groovy consistently used ExpandoMetaClass as

the default implementation. There are discussions about this change in

the Groovy community.

In this chapter, you saw how to intercept methods calls to realize AOP-

like method advice capabilities. You’ll find this feature useful to mock

methods for the sake of testing, temporarily replace problem methods,

study alternate implementations for algorithms without having to mod-

ify existing code, and more. You can go further with MOP by adding

methods dynamically as well. You’ll explore this in the next chapter.

5. Groovy allows each POGO to be associated with its own instance of MetaClass. This

gives you the advantage of refining specific instances, as you’ll see in Chapter 14, MOP

Method Injection and Synthesis, on the next page.
6. You can find examples in Section 14.2, Injecting Methods Using ExpandoMetaClass,

on page 208 and in Section 14.4, Method Synthesis Using methodMissing, on page 214.

http://media.pragprog.com/titles/vslg/code/InterceptingMethodsUsingMOP/MetaClassUsed.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=201

Chapter 14

MOP Method Injection
and Synthesis

In Groovy you can open a class at any time. That is, you can add meth-

ods to classes dynamically, allowing them to change behavior at run-

time. Rather than working with a static structure and predefined set of

methods, objects can be agile, flexible, and assimilate behavior based

on what’s going on in your application. You can add a method based

on a certain input you receive, for example. The ability to modify the

behavior of your classes is central to metaprogramming and Groovy’s

MOP.

Using Groovy’s MOP, you can inject behavior in one of several ways.

You can use the following:

• Categories

• ExpandoMetaClass

• GroovyInterceptable

• GroovyObject’s invokeMethod()

• GroovyObject’s methodMissing()

I separate adding behavior into two types: injection and synthesis.

I’ll use the term method injection to refer to the case in which at code-

writing time you know the names of methods you want to add to one

more more classes. Method injection allows you to add behavior dynam-

ically into classes. You can add a set of reusable methods—like util-

ity functions—that represent a certain functionality, to any number of

classes. You can inject methods either by using categories or by using

ExpandoMetaClass.

INJECTING METHODS USING CATEGORIES 203

On the other hand, method synthesis will refer to the case in which you

want to dynamically figure out the behavior for methods upon invoca-

tion. Groovy’s invokeMethod(), methodMissing(), and GroovyInterceptable

are useful for method synthesis. For example, Grails/GORM synthe-

sizes finder methods like findByFirstName() and findByFirstNameAndLast-

Name() for domain objects upon invocation.

A synthesized method may not exist as a separate method until you

call it. When you call a nonexistent method, Groovy can intercept the

call, allow your application to implement it on the fly, let you cache

that implementation for future invocation, and then invoke it—Graeme

Rocher calls it the “Intercept, Cache, Invoke” pattern.

In this chapter, you’ll learn about MOP facilities for method injection

and method synthesis.

14.1 Injecting Methods Using Categories

Groovy categories provide a controlled way to inject methods—the effect

of method injection is contained within a block of code. A category is

an object that has the ability to alter your class’s MetaClass. It does so

within the scope of the block and the executing thread. It reverses the

change when you exit the block. Categories can be nested, and you can

also apply multiple categories in a single block. You will explore the

behavior and use of categories using examples in this section.

Suppose you have a Social Security number in a String or StringBuffer.

You want to inject a method toSSN() that will return the string in the

format xxx-xx-xxxx. Let’s discuss some ways to achieve this.

Say the first plan of attack is to create a class SSNStringBuilder that

extends StringBuffer and write the method toSSN() in it. Unfortunately,

users of StringBuffer won’t have this method. It’s available only on SSN-

StringBuilder. Also, you can’t extend the final class String, so you don’t

have this method on it.

Instead, take advantage of Groovy’s categories by creating a class String-

Util and adding a static method toSSN() in it. This method takes one

parameter, the target object on which the method is to be injected.

The method checks the size of the string and returns a string in the

intended format. To use the new method, call a special method use()

that takes two parameters: a category and a closure block of code within

which the injected method(s) are in effect.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=203

INJECTING METHODS USING CATEGORIES 204

The code is as follows:

Download InjectionAndSynthesisWithMOP/UsingCategories.groovy

class StringUtil

{

def static toSSN(self) //write toSSN(String self) to restrict to String

{

if (self.size() == 9)

{

return "${self[0..2]}-${self[3..4]}-${self[5..8]}"

}

}

}

use(StringUtil)

{

println "123456789".toSSN()

println new StringBuffer("987654321").toSSN()

}

try

{

println "123456789".toSSN()

}

catch(MissingMethodException ex)

{

println ex.message

}

Here’s the output from the previous code:

123-45-6789

987-65-4321

No signature of method: java.lang.String.toSSN()

is applicable for argument types: () values: {}

The method you injected is available only within the use block. When

you called toSSN() outside the block, you got a MissingMethodException.

The calls to toSSN() on instances of String and StringBuffer within the block

are routed to the static method in the category StringUtil. The parameter

self of toSSN() is assigned to the target instance. Since you did not define

the type of the self parameter, its type defaults to Object, and toSSN()

is available on any object. If you want to restrict it to only Strings and

StringBuffers, you will have to create two versions of toSSN() with explicit

parameter types, one with String self and the other with StringBuffer self.

Groovy categories require the injection method to be static and take

at least one parameter. The first parameter (called self in this exam-

ple) refers to the target of the method call. Any parameters that your

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=204

INJECTING METHODS USING CATEGORIES 205

injected method takes will trail. The parameters can be any legal Groovy

parameters—objects and closures.

Let’s take a moment to understand the magic that happened when you

called use() in the previous example. Groovy routes calls to the use()

method in your script to the public static Object use(Class categoryClass,

Closure closure) method of the GroovyCategorySupport class. This method

defines a new scope—a fresh property/method list on the stack for the

target objects’ MetaClass. It then examines each of the static methods

in the given category class and adds its static methods with at least

one parameter to the property/method list. Finally, it calls the closure

attached. Any method calls from within the closure are intercepted and

sent to the implementation provided by the category, if present. This is

true for new methods you add and existing methods that you’re inter-

cepting. Finally, upon return from the closure, use() ends the scope

created earlier, discarding the injected methods in the category.

Injected methods can take objects and closures as parameters. Here is

an example to show that. Let’s write another category FindUtil. Here you

are providing a method called extractOnly() that will extract part of a

string specified by a closure parameter to it:

Download InjectionAndSynthesisWithMOP/UsingCategories.groovy

class FindUtil

{

def static extractOnly(String self, closure)

{

def result = ''

self.each {

if (closure(it)) { result += it }

}

result

}

}

use(FindUtil)

{

println "121254123".extractOnly { it == '4' || it == '5' }

}

The result of the previous call is as follows:

54

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=205

INJECTING METHODS USING CATEGORIES 206

Built-in Categories

Groovy comes with a couple of categories to make our lives
easier. DOMCategory (see Section 9.1, Using DOMCategory, on
page 156) allows you to treat DOM objects like JavaBeans and
use Groovy path expressions (GPath) (see Section 9.1, Using
XMLParser , on page 158). ServletCategory allows you to use
Servlet API objects’ attributes using the JavaBeans convention.

You can apply more than one category at the same time—to bring in

multiple sets of methods. use() takes either one category or a list of

categories. Here’s an example to use both the categories you created

earlier:

Download InjectionAndSynthesisWithMOP/UsingCategories.groovy

use(StringUtil, FindUtil)

{

str = "123487651"

println str.toSSN()

println str.extractOnly { it == '8' || it == '1' }

}

The output from the previous code is as follows:

123-48-7651

181

Even though use() takes a List of Class instances, Groovy is quite happy to

accept a comma-separated list of class names. This is because Groovy

turns the name of a class, once defined, into a reference to the Class

metaobject; e.g., String is equivalent to String.class, in other words, String

== String.class.

When you mix multiple categories, the obvious question is about the

order in which method calls get resolved when there is a method name

collision. The last category in the list takes the highest precedence.

Groovy allows you to nest calls to use. That is, you can call use() from

within a closure of another call to use(). An inner category takes prece-

dence over the outer.

So far, you’ve seen how to inject new methods into an existing class.

In Chapter 13, Intercepting Methods Using MOP, on page 194, you saw

ways to intercept existing methods. You can use categories for that

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=206

INJECTING METHODS USING CATEGORIES 207

as well. Suppose you want to intercept calls to toString() and pad the

response with two exclamations on each side. Here’s how to do that

using categories:

Download InjectionAndSynthesisWithMOP/UsingCategories.groovy

class Helper

{

def static toString(String self)

{

def method = self.metaClass.methods.find { it.name == 'toString' }

'!!' + method.invoke(self, null) + '!!'

}

}

use(Helper) {

println 'hello'.toString()

}

The output from the previous code is as follows:

!!hello!!

The Helper’s toString() is used to intercept calls to that method on String

“hello.” However, within this interceptor, you want to call the original

toString(). You get access to it using the MetaClass of String.

Using categories for method interception is not as elegant as the other

approaches you saw in Chapter 13, Intercepting Methods Using MOP, on

page 194. You can’t use it for filtering all method calls to an instance.

You’ll have to write separate methods for each method you want to

intercept. Also, when you have nested categories, you can’t reach into

the interception of the top-level categories. Use categories for method

injection, but not for method interception.

Categories provide a nice method injection protocol. Their effect is con-

tained within the flow of control in the use block. You leave the block,

and the injected methods disappear. When you receive a parameter on

your methods, you can apply your own categories to that parameter. It

feels like you augmented the type of the object you received. When you

leave your method, you’re returning the object with its class unaffected.

You can implement different versions of intercepted/injected methods

by using different categories.

Categories have some limitations, however. Their effect is contained

within the use() block and hence limited to the executing thread. So,

injected methods are restricted. Existing methods can be called from

anywhere, but injected methods have to be called within the block. If

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingCategories.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=207

INJECTING METHODS USING EXPANDOMETACLASS 208

you enter and exit the block multiple times, there is overhead. Each

time you enter, Groovy has to examine static methods and add them to

a method list in the new scope. At the end of the block, it has to clean

up the scope.

If the calls are not too frequent and you want the isolation that con-

trolled method injection categories provide, use them. If those features

turn into limitations, use ExpandoMetaClass for injecting methods. We’ll

discuss that next.

14.2 Injecting Methods Using ExpandoMetaClass

If you want to create DSLs, you need to be able to add arbitrary meth-

ods to different classes and even hierarchies of classes. You need to

inject instance methods and static methods, manipulate constructors,

and convert a method to a property for the sake of fluency. You’ll want

these capabilities if you want to create mock objects to stand in for

collaborators. In this section, you’ll learn the techniques to alter and

enhance the structure of a class.

You can inject methods into a class by adding methods to its MetaClass.

The methods you inject are available globally. You’re not restricted

to a block like in categories. (I discussed ExpandoMetaClass in Sec-

tion 13.2, Intercepting Methods Using MetaClass, on page 197.) Using

ExpandoMetaClass, you can add methods, properties, constructors, and

static methods, and you can even borrow methods from other classes.

You can use it to inject methods into POGOs and POJOs.

Let’s look at an example of using ExpandoMetaClass to inject a method

called daysFromNow() into Integer. You want the statement 5.daysFrom-

Now() to return the date five days from today. Here’s the code:

Download InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.daysFromNow = { ->

Calendar today = Calendar.instance

today.add(Calendar.DAY_OF_MONTH, delegate)

today.time

}

println 5.daysFromNow()

The previous code reports the following:

Thu Dec 20 13:16:03 MST 2007

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=208

INJECTING METHODS USING EXPANDOMETACLASS 209

In this code, you implemented daysFromNow() using a closure and intro-

duced that into the MetaClass of Integer. (To inject the method on any

object, add it to MetaClass of Object.) Within the closure, you need to get

access to the target object of Integer. The delegate refers to the target.

See Section 5.8, Closure Delegation, on page 107 and Section 8.1, Object

Extensions, on page 141 for discussions on delegate and closures.

If you want, drop that parentheses at the end of the method call to

make it fluent (see Section 18.2, Fluency, on page 279) so you can

call 5.daysFromNow. However, this needs a little trick (see Section 18.8,

The Parentheses Limitation and a Workaround, on page 285). Basically,

you need to set up a property instead of method because without the

parentheses Groovy thinks it’s a property and not a method. To define

a property named daysFromNow, you have to create a method named

getDaysFromNow(), so let’s do that:

Download InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.getDaysFromNow = { ->

Calendar today = Calendar.instance

today.add(Calendar.DAY_OF_MONTH, delegate)

today.time

}

println 5.daysFromNow

The output from the previous code is shown next. The call to the prop-

erty daysFromNow is now routed to the method getDaysFromNow().

Thu Dec 20 13:16:03 MST 2007

You injected a method on Integer, but what about its cousins Short and

Long? The previous method is not available on these classes. You cer-

tainly don’t want to redundantly add the method to those classes. One

idea is to store the closure in a variable and then assign it to these

classes, as shown here:

Download InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy

daysFromNow = { ->

Calendar today = Calendar.instance

today.add(Calendar.DAY_OF_MONTH, (int)delegate)

today.time

}

Integer.metaClass.daysFromNow = daysFromNow

Long.metaClass.daysFromNow = daysFromNow

println 5.daysFromNow()

println 5L.daysFromNow()

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=209

INJECTING METHODS USING EXPANDOMETACLASS 210

The output is as follows:

Thu Dec 20 13:26:43 MST 2007

Thu Dec 20 13:26:43 MST 2007

Alternately, you can provide the method in the base class Number of

Integer. Let’s add a method named someMethod() on Number and see

whether it’s available on Integer and Long:1

Download InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy

Integer.metaClass

Long.metaClass

// Above statements will not be needed if

// ExpandoMetaClass was the default MetaClass

// in Groovy.

Number.metaClass.someMethod = { ->

println "someMethod called"

}

2.someMethod()

2L.someMethod()

The output from the previous code, shown here, confirms that the

methods are available on the derived classes:

someMethod called

someMethod called

You saw how to inject a method into a class hierarchy. You might also

want to introduce methods into an interface hierarchy so the methods

are available on all classes implementing that interface.

When you add a method at the interface level, the method needs to

be injected into the MetaClass for each of the implementing classes.

That happens in Groovy only if enableGlobally() of ExpandoMetaClass has

been called already. However, be aware that turning that flag on will

increase the demand on memory. You’ll take a look at adding a method

to an interface later in Section 18.10, ExpandoMetaClass and DSLs, on

page 289.

You can inject static methods into a class as well. You add static meth-

ods to the static property of the MetaClass.

1. This is an example of the effect of ExpandoMetaClass not being the default MetaClass. For

more information, see Section 13.2, Intercepting Methods Using MetaClass, on page 197.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodOnHierarchy.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=210

INJECTING METHODS USING EXPANDOMETACLASS 211

Let’s add a static method isEven() to Integer:

Download InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.static.isEven = { val -> val % 2 == 0 }

println "Is 2 even? " + Integer.isEven(2)

println "Is 3 even? " + Integer.isEven(3)

The output from the previous code is as follows:

Is 2 even? true

Is 3 even? false

You figured how to inject instance methods and static methods. The

third type of method a class can have is the constructor. You can add

constructors as well by defining a special property with the name con-

structor. Since you’re adding a constructor and not replacing an existing

one, you’d use the << operator.2 Let’s introduce a constructor for Integer

that accepts a Calendar so the instance will hold the number of days as

of that date:

Download InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.constructor << { Calendar calendar ->

new Integer(calendar.get(Calendar.DAY_OF_YEAR))

}

println new Integer(Calendar.instance)

The output from the previous code is as follows:

349

In the injected constructor you are using the existing constructor of

Integer that accepts an int. You could have returned the result of call

to Calendar’s get() instead of creating a new instance of Integer. In that

case, autoboxing will take care of creating an Integer instance. Make

sure that your implementation doesn’t recursively call itself, leading to

a StackOverflowError.

Instead of adding a new constructor, if you want to replace (or override,

though strictly speaking constructors are not overridable) a construc-

tor, you can do that by using the = operator instead of the << operator.

2. Using << to override existing constructors or methods will result in an error.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=211

INJECTING METHODS INTO SPECIFIC INSTANCES 212

Download InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy

Integer.metaClass.constructor = { int val ->

println "Intercepting constructor call"

constructor = Integer.class.getConstructor(Integer.TYPE)

constructor.newInstance(val)

}

println new Integer(4)

println new Integer(Calendar.instance)

The output from the previous code is as follows:

Intercepting constructor call

4

Intercepting constructor call

349

From within the constructor override, you can still call the original

implementation using reflection. As you can see, other constructors—

predefined and injected—are still intact. So, when you create an Integer

using a Calendar instance, it uses the constructor injected earlier, which

in turn now uses the constructor override provided previously.

ExpandoMetaClass is very flexible for injecting methods. You can use

the injected methods from anywhere in your application. You invoke

injected methods just like you invoke regular methods. With Expando-

MetaClass, you can inject methods into POJOs and POGOs. So, you can

enjoy the dynamic capabilities for all classes.

ExpandoMetaClass has some limitations, however. The injected methods

are available only for calls within Groovy code. You can’t use it from

within compiled Java code. They can’t be used with reflection from Java

code either.

14.3 Injecting Methods into Specific Instances

You saw ways to inject methods into a class dynamically. You can

add behavior to specific instances of a class much like how you added

behavior to the class. Suppose you receive a Person and based on cer-

tain conditions or state want to perform some operations on it. You

figure it would be easier to inject a set of reusable methods or utility

functions on it; however, you don’t want to apply those globally on all

Persons. Groovy makes it fairly simple to inject instances with methods.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/UsingExpandoMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=212

INJECTING METHODS INTO SPECIFIC INSTANCES 213

The MetaClass is per-instance for POGOs. If you want an instance to

have a different behavior than the other objects instantiated from the

same class, provide it with a specialized ExpandoMetaClass. Create an

instance of ExpandoMetaClass, add the desired methods to it, initialize

it (required to indicate the completion of method/property additions),

and attach to the instance you desire to enhance. Here is an example

of adding a method to an instance of Person:

Download InjectionAndSynthesisWithMOP/InjectInstance.groovy

class Person {}

def emc = new ExpandoMetaClass(Person)

emc.sing = { ->

'oh baby baby...'

}

emc.initialize()

def jack = new Person()

def paul = new Person()

jack.metaClass = emc

println jack.sing()

try

{

paul.sing()

}

catch(ex)

{

println ex

}

The previous code reports the following:

oh baby baby...

groovy.lang.MissingMethodException:

No signature of method: Person.sing()

is applicable for argument types: () values: {}

You injected sing() on your courageous friend jack by setting the in-

stance of MetaClass on it. You can now invoke sing() on jack. However, if

you try to call it on any other instance of Person, it will fail.

You can set the metaClass property for POGOs only. It’s read-only on

POJOs. Thus, instance-specific method injection is available only for

Groovy objects.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/InjectInstance.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=213

METHOD SYNTHESIS USING METHODMISSING 214

14.4 Method Synthesis Using methodMissing

So far you’ve been able to inject specific methods into a class or an

instance. In this section, you’ll synthesize methods with flexible and

dynamic names. You don’t decide the names ahead of time. In fact, you

can let the users of your class decide the names as long as they fol-

low conventions you set. When they call a nonexistent method, you can

intercept it and create an implementation on the fly. The implementa-

tion is made to measure. In other words, it is created only when they

ask for it.

Method synthesis is implemented in Grails/GORM for domain classes.

Suppose you have a domain class (a class that represents information

persistent in a database table) Person with a number of fields (columns

in the table) such as firstName, lastName, cityOfResidence, and so on.

Assume other fields can be added at any time. GORM allows users of

your Person class to call methods such as findByFirstName(), findByLast-

Name(), findByFirstNameAndLastName(), or even findByFirstNameAndAge() if

age is a field on Person. Your Person class will not have any of these

methods precreated. Each method is synthesized at runtime on the first

call. In the rest of this chapter, you’ll learn how to synthesize methods

in Groovy.

You can intercept calls to nonexistent methods in Groovy by implement-

ing methodMissing(). Within this method you can implement the logic for

the method dynamically. You infer the semantics based on certain con-

ventions you define. For instance, method names that start with find

might imply a query, method names that start with update may imply

a save, and so on.

Let’s look at an example of synthesizing methods. You are going to turn

jack, a boring, all-work-no-play Person, into a multiathlete. He’ll play all

kinds of sports.

Download InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing.groovy

class Person

{

def work() { "working..." }

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

def methodMissing(String name, args)

{

System.out.println "methodMissing called for $name"

def methodInList = plays.find { it == name.split('play')[1]}

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=214

METHOD SYNTHESIS USING METHODMISSING 215

if (methodInList)

{

return "playing ${name.split('play')[1]}..."

}

else

{

throw new MissingMethodException(name, Person.class, args)

}

}

}

jack = new Person()

println jack.work()

println jack.playTennis()

println jack.playBasketBall()

println jack.playVolleyBall()

println jack.playTennis()

try

{

jack.playPolitics()

}

catch(Exception ex)

{

println "Error: " + ex

}

The output from the previous code is as follows:

working...

methodMissing called for playTennis

playing Tennis...

methodMissing called for playBasketBall

playing BasketBall...

methodMissing called for playVolleyBall

playing VolleyBall...

methodMissing called for playTennis

playing Tennis...

methodMissing called for playPolitics

Error: groovy.lang.MissingMethodException:

No signature of method: Person.playPolitics()

is applicable for argument types: () values: {}

work() is the only predefined domain method on Person. The call to work()

directly went to that method. However, calls to nonexistent methods are

routed to the methodMissing() method. In methodMissing(), you accept a

call if it starts with play and ends with one of the names in the plays

array, and you can dynamically modify this list to add other sports

you want, giving the impression that jack is assimilating new skills. If

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=215

METHOD SYNTHESIS USING METHODMISSING 216

the method is not one you support (such as playPolitics()), you throw a

MissingMethodException.

From the caller point of view, there is no difference between calling a

regular method and a synthesized method.

The previous implementation is quite dynamic, but there’s a catch.

Repeated calls to a nonexistent method, such as playTennis(), involve

the same performance hit to evaluate. You can make this efficient by

injecting the method on first invocation.3 So, you are going to synthe-

size the method on first call, inject it into the MetaClass (cache it), and

then invoke this injected method. Here is the code for that:

Download InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing2.groovy

class Person

{

def work() { "working..." }

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

def methodMissing(String name, args)

{

System.out.println "methodMissing called for $name"

def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList)

{

def impl = { Object[] vargs ->

return "playing ${name.split('play')[1]}..."

}

Person.metaClass."$name" = impl //future calls will use this

return impl(args)

}

else

{

throw new MissingMethodException(name, Person.class, args)

}

}

static { Person.metaClass }

}

jack = new Person()

println jack.playTennis()

println jack.playTennis()

3. Again, Graeme Rocher calls it the “Intercept, Cache, Invoke” pattern.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingMethodMissing2.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=216

METHOD SYNTHESIS USING METHODMISSING 217

methodMissing and GroovyInterceptable

Unlike invokeMethod(), which is called for all methods on objects
that implement GroovyInterceptable, methodMissing() is called
only for methods that are nonexistent at the time of call. If
an object implements GroovyInterceptable, its invokeMethod() is
called if present. Only if it forwards control to its MetaClass’s
invokeMethod() does methodMissing() get called.

The output from the previous code is as follows:

methodMissing called for playTennis

playing Tennis...

playing Tennis...

You can see that the methodMissing() method is called only on the first

call to a supported nonexistent method. The second (and subsequent)

call to the same supported method goes directly to the implementa-

tion (closure) you injected into the MetaClass. There is a caveat in this

example—I placed the statement Person.metaClass in the static initial-

izer of Person. Try commenting out that statement and running the

code to see the difference in output. The reason for the difference is

ExpandoMetaClass is not the default MetaClass used in Groovy. For more

information, see Section 13.2, Intercepting Methods Using MetaClass,

on page 197.

In Section 13.2, Intercepting Methods Using MetaClass, on page 197,

you intercepted calls using GroovyInterceptable. You can mix that with

methodMissing() to intercept calls to both existing methods and synthe-

sized methods, as shown here:

Download InjectionAndSynthesisWithMOP/InterceptingMissingMethods.groovy

ExpandoMetaClass.enableGlobally()

class Person implements GroovyInterceptable

{

def work() { "working..." }

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

def invokeMethod(String name, args)

{

System.out.println "intercepting call for $name"

def method = metaClass.getMetaMethod(name, args)

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/InterceptingMissingMethods.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=217

METHOD SYNTHESIS USING METHODMISSING 218

if (method)

{

return method.invoke(this, args)

}

else

{

return metaClass.invokeMethod(this, name, args)

}

}

def methodMissing(String name, args)

{

System.out.println "methodMissing called for $name"

def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList)

{

def impl = { Object[] vargs ->

return "playing ${name.split('play')[1]}..."

}

Person.metaClass."$name" = impl //future calls will use this

return impl(args)

}

else

{

throw new MissingMethodException(name, Person.class, args)

}

}

}

jack = new Person()

println jack.work()

println jack.playTennis()

println jack.playTennis()

The output from the previous code is as follows:

intercepting call for work

working...

intercepting call for playTennis

methodMissing called for playTennis

playing Tennis...

intercepting call for playTennis

playing Tennis...

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=218

METHOD SYNTHESIS USING EXPANDOMETACLASS 219

14.5 Method Synthesis Using ExpandoMetaClass

In Section 14.4, Method Synthesis Using methodMissing, on page 214,

you saw how to synthesize methods. If you don’t have the privilege to

edit the class source file or if the class is not a POGO, that approach

will not work. You can synthesize methods using the ExpandoMetaClass

in these cases.

You already saw how to interact with MetaClass in Section 13.2, Inter-

cepting Methods Using MetaClass, on page 197. Instead of providing

an interceptor for a domain method, you implement the methodMissing()

method on it. Let’s take the Person class (and the boring jack) from Sec-

tion 14.4, Method Synthesis Using methodMissing, on page 214, but

instead we’ll use ExpandoMetaClass, as shown here:

Download InjectionAndSynthesisWithMOP/MethodSynthesisUsingEMC.groovy

ExpandoMetaClass.enableGlobally()

class Person

{

def work() { "working..." }

}

Person.metaClass.methodMissing = { String name, args ->

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

System.out.println "methodMissing called for $name"

def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList)

{

def impl = { Object[] vargs ->

return "playing ${name.split('play')[1]}..."

}

Person.metaClass."$name" = impl //future calls will use this

return impl(args)

}

else

{

throw new MissingMethodException(name, Person.class, args)

}

}

jack = new Person()

println jack.work()

println jack.playTennis()

println jack.playTennis()

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodSynthesisUsingEMC.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=219

METHOD SYNTHESIS USING EXPANDOMETACLASS 220

try

{

jack.playPolitics()

}

catch(ex)

{

println ex

}

The output from the previous code is as follows:

working...

methodMissing called for playTennis

playing Tennis...

playing Tennis...

methodMissing called for playPolitics

groovy.lang.MissingMethodException:

No signature of method: Person.playPolitics()

is applicable for argument types: () values: {}

When you called work() on jack, Person’s work() was executed directly.

If you call a nonexistent method, however, it is routed to the Person’s

MetaClass’s methodMissing().4 You implement logic in this method similar

to the solution in Section 14.4, Method Synthesis Using methodMissing,

on page 214. Repeated calls to supported nonexistent method do not

incur overhead, as you can see in the previous output for the second

call to playTennis(). You cached the implementation on the first call.

In Section 13.2, Intercepting Methods Using MetaClass, on page 197,

you intercepted calls using ExpandoMetaClass’s invokeMethod(). You can

mix that with methodMissing() to intercept calls to both existing methods

and synthesized methods, as shown here:

Download InjectionAndSynthesisWithMOP/MethodSynthesisAndInterceptionUsingEMC.groovy

ExpandoMetaClass.enableGlobally()

class Person

{

def work() { "working..." }

}

Person.metaClass.invokeMethod = { String name, args ->

System.out.println "intercepting call for ${name}"

def method = Person.metaClass.getMetaMethod(name, args)

4. methodMissing() of the MetaClass will take precedence over methodMissing() if present in

your class. Methods of your class’s MetaClass override the methods in your class.

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/MethodSynthesisAndInterceptionUsingEMC.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=220

METHOD SYNTHESIS USING EXPANDOMETACLASS 221

if (method)

{

return method.invoke(delegate, args)

}

else

{

return Person.metaClass.invokeMissingMethod(delegate, name, args)

}

}

Person.metaClass.methodMissing = { String name, args ->

def plays = ['Tennis', 'VolleyBall', 'BasketBall']

System.out.println "methodMissing called for ${name}"

def methodInList = plays.find { it == name.split('play')[1]}

if (methodInList)

{

def impl = { Object[] vargs ->

return "playing ${name.split('play')[1]}..."

}

Person.metaClass."$name" = impl //future calls will use this

return impl(args)

}

else

{

throw new MissingMethodException(name, Person.class, args)

}

}

jack = new Person()

println jack.work()

println jack.playTennis()

println jack.playTennis()

The output from the previous code is as follows:

intercepting call for work

working...

intercepting call for playTennis

methodMissing called for playTennis

playing Tennis...

intercepting call for playTennis

playing Tennis...

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=221

SYNTHESIZING METHODS FOR SPECIFIC INSTANCES 222

invokeMethod vs. methodMissing

invokeMethod() is a method of GroovyObject. methodMissing()
was introduced later in Groovy and is part of the MetaClass-
based method handling. If your objective is to handle calls to
nonexisting methods, implement methodMissing() because this
involves low overhead. If your objective is to intercept calls to
both existing and nonexisting methods, use invokeMethod().

14.6 Synthesizing Methods for Specific Instances

I showed how you can inject methods into specific instances of a class

in Section 14.3, Injecting Methods into Specific Instances, on page 212.

You can synthesize methods dynamically as well as into specific in-

stances by providing the instance(s) with a specialized MetaClass. Here

is an example:

Download InjectionAndSynthesisWithMOP/SynthesizeInstance.groovy

class Person {}

def emc = new ExpandoMetaClass(Person)

emc.methodMissing = { String name, args ->

"I'm Jack of all trades... I can $name"

}

emc.initialize()

def jack = new Person()

def paul = new Person()

jack.metaClass = emc

println jack.sing()

println jack.dance()

println jack.juggle()

try

{

paul.sing()

}

catch(ex)

{

println ex

}

http://media.pragprog.com/titles/vslg/code/InjectionAndSynthesisWithMOP/SynthesizeInstance.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=222

SYNTHESIZING METHODS FOR SPECIFIC INSTANCES 223

The previous code reports the following:

I'm Jack of all trades... I can sing

I'm Jack of all trades... I can dance

I'm Jack of all trades... I can juggle

groovy.lang.MissingMethodException:

No signature of method: Person.sing()

is applicable for argument types: () values: {}

Like injecting into specific instances, synthesizing methods for specific

instances is limited to Groovy objects.

In this chapter, you learned how to intercept, inject, and synthesize

methods. Groovy MOP makes it easy to perform AOP-like activities.

You can create code that is highly dynamic, and you can create highly

reusable code with fewer lines of code. You’ll put all these skills together

in the next chapter.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=223

Chapter 15

MOPping Up
You’ve seen how to synthesize methods, and in this chapter, you’ll see

how to synthesize an entire class. Rather than creating explicit classes

ahead of time, you can create classes on the fly, which gives you more

flexibility. Delegation is better than inheritance, yet it has been hard to

implement in Java. You’ll see how Groovy MOP allows method delega-

tion with only one line of code. I’ll wrap this chapter up by reviewing the

different MOP techniques you’ve seen in the previous three chapters.

15.1 Creating Dynamic Classes with Expando

In Groovy you can create a class entirely at runtime. Suppose you’re

building an application that will configure devices. You don’t have a

clue what these devices are—you know only that devices have proper-

ties and configuration scripts. You don’t have the luxury of creating an

explicit class for each device at coding time. So, you’ll want to synthe-

size classes at runtime to interact with and configure these devices. In

Groovy, classes can come to life at runtime at your command.

The Groovy class that gives you the ability to synthesize classes dynam-

ically is Expando, which got its name because it is dynamically expand-

able. You can assign properties and methods to it either at construc-

tion time using a Map or at any time dynamically. Let’s start with an

example to synthesize a class Car. I’ll show two ways to create it using

Expando.

CREATING DYNAMIC CLASSES WITH EXPANDO 225

Download MOPpingUp/UsingExpando.groovy

carA = new Expando()

carB = new Expando(year: 2007, miles: 0)

carA.year = 2007

carA.miles = 10

println "carA: " + carA

println "carB: " + carB

The output from the previous code is as follows:

carA: {year=2007, miles=10}

carB: {year=2007, miles=0}

You created carA, the first instance of Expando, without any properties

or methods. You injected the year and miles later. On the other hand,

you created carB, the second instance of Expando, with the year and

miles initialized at construction time.

You’re not restricted to properties. You can define methods as well and

invoke them like you would invoke any method. Let’s give that a try.

Once again, you can define a method at construction time or inject

later at will:

Download MOPpingUp/UsingExpando.groovy

car = new Expando(year: 2007, miles: 0, turn: { println 'turning...' })

car.drive = {

miles += 10

println "$miles miles driven"

}

car.drive()

car.turn()

The output from the previous code is as follows:

10 miles driven

turning...

Suppose you have an input file with some data for Cars, as shown here:

Download MOPpingUp/car.dat

miles, year, make

42451, 2003, Acura

24031, 2003, Chevy

14233, 2006, Honda

You can easily work with Car objects without explicitly creating a Car

class, as in the following code. You’re parsing the content of the file, first

http://media.pragprog.com/titles/vslg/code/MOPpingUp/UsingExpando.groovy
http://media.pragprog.com/titles/vslg/code/MOPpingUp/UsingExpando.groovy
http://media.pragprog.com/titles/vslg/code/MOPpingUp/car.dat
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=225

CREATING DYNAMIC CLASSES WITH EXPANDO 226

extracting the property names. Then you create instances of Expando,

one for each line of data in the input file, and populate it with values

for the properties. You even add a method, in the form of a closure, to

compute the average miles driven per year until 2008. Once the objects

are created, you can access the properties and call methods on them

dynamically. You can also address the methods/properties by name, as

shown in the end.

Download MOPpingUp/DynamicObjectsUsingExpando.groovy

data = new File('car.dat').readLines()

props = data[0].split(", ")

data -= data[0]

def averageMilesDrivenPerYear = { miles.toLong() / (2008 - year.toLong()) }

cars = data.collect {

car = new Expando()

it.split(", ").eachWithIndex { value, index ->

car[props[index]] = value

}

car.ampy = averageMilesDrivenPerYear

car

}

props.each { name -> print "$name " }

println " Avg. MPY"

ampyMethod = 'ampy'

cars.each { car ->

for(String property : props) { print "${car[property]} " }

println car."$ampyMethod"()

}

// You may also access the properties/methods by name

car = cars[0]

println "$car.miles $car.year $car.make ${car.ampy()}"

The output from the previous code is as follows:

miles year make Avg. MPY

42451 2003 Acura 8490.2

24031 2003 Chevy 4806.2

14233 2006 Honda 7116.5

42451 2003 Acura 8490.2

http://media.pragprog.com/titles/vslg/code/MOPpingUp/DynamicObjectsUsingExpando.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=226

METHOD DELEGATION: PUTTING IT ALL TOGETHER 227

Use Expando whenever you want to synthesize classes on the fly. It is

lightweight and flexible. One place where you will see them shine is to

create mock objects for unit testing (see Section 16.8, Mocking Using

Expando, on page 251).

15.2 Method Delegation: Putting It All Together

You use inheritance to extend the behavior of a class. On the other

hand, you use delegation to rely upon contained or aggregated objects

to provide the behavior of a class. Choose inheritance if your intent is to

use an object in place of another object. Choose delegation if the intent

is to simply use an object. Reserve inheritance for an is-a or kind-of

relationship only; you should prefer delegation over inheritance most

of the time. However, it’s easy to program inheritance, because it takes

only one keyword, extends. But it’s hard to program delegation, because

you have to write all those methods that route the call to the contained

objects. Groovy helps you do the right thing. By using MOP, you can

easily implement delegation with a single line of code, as you’ll see in

this section.

In the following example, a Manager wants to delegate work to either

a Worker or an Expert. You’re using methodMissing() and ExpandoMeta-

Class to realize this. If a method called on the instance of Manager does

not exist, its methodMissing() routes it to either the Worker or the Expert,

whichever respondsTo() to the method (see Section 12.2, Querying Meth-

ods and Properties, on page 190). If there are no takers for a method

among the delegates and the Manager does not handle it, the method

call fails.

Download MOPpingUp/Delegation.groovy

ExpandoMetaClass.enableGlobally()

class Worker

{

def simpleWork1(spec) { println "worker does work1 with spec $spec" }

def simpleWork2() { println "worker does work2" }

}

class Expert

{

def advancedWork1(spec) { println "Expert does work1 with spec $spec" }

def advancedWork2(scope, spec)

{

println "Expert does work2 with scope $scope spec $spec"

}

}

http://media.pragprog.com/titles/vslg/code/MOPpingUp/Delegation.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=227

METHOD DELEGATION: PUTTING IT ALL TOGETHER 228

class Manager

{

def worker = new Worker()

def expert = new Expert()

def schedule() { println "Scheduling ..." }

def methodMissing(String name, args)

{

println "intercepting call to $name..."

def delegateTo = null

if(name.startsWith('simple')) { delegateTo = worker }

if(name.startsWith('advanced')) { delegateTo = expert }

if (delegateTo?.metaClass.respondsTo(delegateTo, name, args))

{

Manager.metaClass."${name}" = { Object[] varArgs ->

return delegateTo.invokeMethod(name, *varArgs)

}

return delegateTo.invokeMethod(name, args)

}

throw new MissingMethodException(name, Manager.class, args)

}

}

peter = new Manager()

peter.schedule()

peter.simpleWork1('fast')

peter.simpleWork1('quality')

peter.simpleWork2()

peter.simpleWork2()

peter.advancedWork1('fast')

peter.advancedWork1('quality')

peter.advancedWork2('protype', 'fast')

peter.advancedWork2('product', 'quality')

try

{

peter.simpleWork3()

}

catch(Exception ex)

{

println ex

}

The output from the previous code is as follows:

Scheduling ...

intercepting call to simpleWork1...

worker does work1 with spec fast

worker does work1 with spec quality

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=228

METHOD DELEGATION: PUTTING IT ALL TOGETHER 229

intercepting call to simpleWork2...

worker does work2

worker does work2

intercepting call to advancedWork1...

Expert does work1 with spec fast

Expert does work1 with spec quality

intercepting call to advancedWork2...

Expert does work2 with scope protype spec fast

Expert does work2 with scope product spec quality

intercepting call to simpleWork3...

groovy.lang.MissingMethodException:

No signature of method: Manager.simpleWork3()

is applicable for argument types: () values: {}

You figured out a way to delegate calls, but that’s a lot of work. You

don’t want to put in so much effort each time you want to delegate. You

can refactor this code for reuse. Let’s first look at how the refactored

code will look like when used in the Manager class:

Download MOPpingUp/DelegationRefactored.groovy

class Manager

{

{ delegateCallsTo Worker, Expert, GregorianCalendar }

def schedule() { println "Scheduling ..." }

}

That is short and sweet. In the initializer block you call a yet-to-be-

implemented method named delegateCallsTo() and send the names of

classes to which you want to delegate unimplemented methods. If you

want to use delegation in another class, all it takes now is that code in

the initialization block. Let’s take a look at the fancy delegateCallsTo()

method:

Download MOPpingUp/DelegationRefactored.groovy

ExpandoMetaClass.enableGlobally()

Object.metaClass.delegateCallsTo = {Class... klassOfDelegates ->

def objectOfDelegates = klassOfDelegates.collect { it.newInstance() }

delegate.metaClass.methodMissing = { String name, args ->

println "intercepting call to $name..."

def delegateTo = objectOfDelegates.find {

it.metaClass.respondsTo(it, name, args) }

http://media.pragprog.com/titles/vslg/code/MOPpingUp/DelegationRefactored.groovy
http://media.pragprog.com/titles/vslg/code/MOPpingUp/DelegationRefactored.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=229

METHOD DELEGATION: PUTTING IT ALL TOGETHER 230

if (delegateTo)

{

delegate.metaClass."${name}" = { Object[] varArgs ->

def params = varArgs?:null

return delegateTo.invokeMethod(name, *params)

}

return delegateTo.invokeMethod(name, args)

}

else

{

throw new MissingMethodException(name, delegate.getClass(), args)

}

}

}

When you call delegateCallsTo() from within your class’s instance ini-

tializer, it adds a methodMissing() to the class, which is known within

this closure as delegate. It takes the Class list provided as an argument

to delegateCallsTo() and creates a list of delegates, which are the can-

didates to implement delegated methods. In methodMissing(), the call

is routed to an object among the delegates that will respond to the

method. If there are no takers, the call fails. The list of classes given to

delegateCallsTo() also represents the order of precedence, and the first

one has the highest precedence. Of course, you have to see all this in

action, so here is the code to exercise the previous example:

Download MOPpingUp/DelegationRefactored.groovy

peter = new Manager()

peter.schedule()

peter.simpleWork1('fast')

peter.simpleWork1('quality')

peter.simpleWork2()

peter.simpleWork2()

peter.advancedWork1('fast')

peter.advancedWork1('quality')

peter.advancedWork2('protype', 'fast')

peter.advancedWork2('product', 'quality')

println "Is 2008 a leap year? " + peter.isLeapYear(2008)

try

{

peter.simpleWork3()

}

catch(Exception ex)

{

println ex

}

http://media.pragprog.com/titles/vslg/code/MOPpingUp/DelegationRefactored.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=230

REVIEW OF MOP TECHNIQUES 231

The previous code produces the following output:

Scheduling ...

intercepting call to simpleWork1...

worker does work1 with spec fast

worker does work1 with spec quality

intercepting call to simpleWork2...

worker does work2

worker does work2

intercepting call to advancedWork1...

Expert does work1 with spec fast

Expert does work1 with spec quality

intercepting call to advancedWork2...

Expert does work2 with scope protype spec fast

Expert does work2 with scope product spec quality

intercepting call to isLeapYear...

Is 2008 a leap year? true

intercepting call to simpleWork3...

groovy.lang.MissingMethodException:

No signature of method: Manager.simpleWork3()

is applicable for argument types: () values: {}

You can build on this idea further to meet your needs. For instance,

if you want to mix some precreated objects, you can send them as an

array to the first parameter of delegateCallsTo() and have those objects

used along with those created from the delegates classes. The previous

example shows how you can use Groovy’s MOP to implement dynamic

behavior such as method delegation.

15.3 Review of MOP Techniques

You’ve seen a number of options to intercept, inject, and synthesize

methods. In this section, you’ll figure out which option is right for you.

Options for Method Interception

I discussed method interception in Chapter 13, Intercepting Methods

Using MOP, on page 194 and in Section 14.1, Injecting Methods Using

Categories, on page 203. You can use GroovyInterceptable, ExpandoMeta-

Class, or categories.

If you have the privilege to modify the class source, you can implement

GroovyInterceptable on the class you want to intercept method calls. The

effort is as simple as implementing invokeMethod().

If you can’t modify the class or if the class is a Java class, then you can

use ExpandoMetaClass or categories. ExpandoMetaClass clearly stands

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=231

REVIEW OF MOP TECHNIQUES 232

out in this case because a single invokeMethod() can take care of inter-

cepting any methods of your class. Categories, on the other hand,

would require separate methods, one per intercepted method. Also, if

you use categories, you’re restricted by the use() block.

Options for Method Injection

I discussed method injection in Section 14.1, Injecting Methods Using

Categories, on page 203. You can use categories or ExpandoMetaClass.

Categories compete well with ExpandoMetaClasses for method injection.

If you use categories, you can control the location where methods are

injected. You can easily implement different versions of method injec-

tion by using different categories. You can easily nest and mix multiple

categories as well. The control offered by categories—that method injec-

tion takes effect only within the use() blocks and is limited to the exe-

cuting thread—may also be considered as a restriction. If you want to

use the injected methods at any location and also want to inject static

method and constructors, ExpandoMetaClass is a better choice. Beware,

though, that ExpandoMetaClass is not the default MetaClass in Groovy.

Using the ExpandoMetaClass, you can inject methods into specific in-

stances of a class instead of affecting the entire class. This is available

only for POGOs, however.

Options for Method Synthesis

I discussed method injection in Section 14.4, Method Synthesis Using

methodMissing, on page 214. You can use methodMissing() on a Groovy

object or ExpandoMetaClass.

If you have the privilege to modify the class source, you can implement

the methodMissing() method on the class for which you want to synthe-

size methods. You can improve performance by injecting the method on

the first call. If you need to intercept your methods at the same time,

you can implement GroovyInterceptable.

If you can’t modify the class or if the class is a Java class, then you

can add the method methodMissing() to the class’s ExpandoMetaClass.

If you want to intercept method calls at the same time, implement

invokeMethod() on the ExpandoMetaClass as well.

Using the ExpandoMetaClass, you can synthesize methods into specific

instances of a class instead of affecting the entire class. This is available

only for POGOs, however.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=232

REVIEW OF MOP TECHNIQUES 233

In this and previous three chapters, you saw the power of metapro-

gramming in Groovy. You can dynamically create classes, methods, and

properties on the fly. You can intercept calls to existing methods and

even method that don’t exist. The extent to which you use metapro-

gramming depends on your application-specific needs. You know, how-

ever, that when your application demands metaprogramming, Groovy

will allow you to implement it quickly. In the remaining chapters in

this part, you’ll see several examples where metaprogramming plays a

vital role—when unit testing with mock objects, creating builders, and

creating DSLs.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=233

Chapter 16

Unit Testing and Mocking
However weak the checks performed by a compiler might be in a static

language, you don’t have even that level of support in a dynamic lan-

guage.1 That’s why unit testing2 is a necessary practice in dynamic

languages. Although you can easily take advantage of dynamic capa-

bilities and metaprogramming in these languages, you have to take the

time to make sure your program is doing what you expect and not just

what you typed.

There has been greater awareness of unit testing among developers in

the past few years; unfortunately, though, the adoption is not suffi-

cient. Unit testing is the software equivalent of exercising. Most devel-

opers would agree that it improves the health of their code, yet many

developers offer various reasons and excuses for not doing it.

Not only is unit testing critical for programming Groovy, but unit testing

is easy and fun in Groovy as well. JUnit is built into Groovy. Metapro-

gramming capabilities make it easy to create mock objects. Groovy also

has a built-in mock library. Let’s take a look at how you can use Groovy

to unit test your Java and Groovy applications.

16.1 Code in This Book and Automated Unit Tests

Unit testing is not something I provide as abstract advice. I have used

automated unit tests for all the code in this book because I’m working

with a language that’s currently evolving. Groovy features change, its

1. Unit testing is essential for metaprogramming. As you’ll see in this chapter, fortu-

nately, metaprogramming helps a great deal with unit testing.
2. See [Bec02], [HT03], [Rai04].

CODE IN THIS BOOK AND AUTOMATED UNIT TESTS 235

implementations change, bugs are being fixed, new features are added,

and so on. I updated my installation of Groovy on my machines quite

a few times as I was writing these chapters and code examples. If

an update broke an example because of a feature or implementation

change, I needed to know that quickly without expending too much

effort. Furthermore, I refactored several examples in this book as the

book evolved. Again, I needed to know quickly that things were still

working as expected. The automated unit tests helped me sleep bet-

ter at night, because I knew that the examples were still working as

expected after a language update or my own refactoring.

Soon after writing the first few examples, I decided to take a break

and figure out a way to automate the testing of all examples while

keeping the examples independent and in isolated files. Some of the

examples are functions, and some are stand-alone programs or scripts.

Groovy’s metaprogramming capabilities, along with the ExpandoMeta-

Class and the ability to load and execute scripts, made it a breeze to

create and execute automated unit tests.

It took me a couple of hours to figure out how to get going. Whenever I

write a new example, I spend about two minutes or less to get the test

written for that example. That effort and time paid off within the first

few days and a few times since. So far about five examples failed as I

upgraded Groovy. More important, these tests gave me assurance that

the other examples are working fine and are valid.

These tests helped in at least five ways:

• It helped further my understanding of Groovy features.

• It helped raise questions in the Groovy users mailing list that

helped fix a few Groovy bugs.

• It helped find and fix an inconsistency in Groovy documentation.

• It continues to help me ensure that all my examples are valid and

working well with the most recent version of Groovy.

• It gave me the courage to refactor any example at will, at any

time, with full confidence that my refactoring improved the code

structure but did not affect its intended behavior.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=235

UNIT TESTING JAVA AND GROOVY CODE 236

16.2 Unit Testing Java and Groovy Code

When you install Groovy, you automatically get a unit testing frame-

work built on JUnit.3,4 You can use it to test any code on the JVM—

your Java code, your Groovy code, and so on. Simply extend your test

class from GroovyTestCase and implement your test methods, and you’re

all set to run your tests.

Let’s start by writing a simple test:

Download UnitTestingWithGroovy/ListTest.groovy

class ListTest extends GroovyTestCase

{

void testListSize()

{

def lst = [1, 2]

assertEquals "ArrayList size must be 2", 2, lst.size()

}

}

Even though Groovy is dynamically typed, JUnit expects the return

type of test methods to be void. So, you had to explicitly use void instead

of def when defining the test method. Groovy’s optional typing helped

here. To run the previous code, simply execute it like you would execute

any Groovy program. So, type the following command:

groovy ListTest

The output of executing the previous code is as follows:

.

Time: 0.006

OK (1 test)

If you’re familiar with JUnit, you already understand this output—one

test was executed successfully.

If you’re a fan of the red-green bar, you can run your unit tests from

within your IDE if it supports running tests.

3. Thanks to excellent Java-Groovy integration, you can use any Java-based testing

framework and mock objects framework (such as EasyMock, JMock, and so on, with

Groovy).
4. Groovy extends JUnit 3.8.2 but not JUnit 4. You can use JUnit 4 with a little extra

effort. If you like to use JUnit 4 and Hamcrest matchers with Groovy, see http://groovy.

codehaus.org/Using+JUnit+4+with+Groovy.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/ListTest.groovy
http://groovy.codehaus.org/Using+JUnit+4+with+Groovy
http://groovy.codehaus.org/Using+JUnit+4+with+Groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=236

UNIT TESTING JAVA AND GROOVY CODE 237

Unit Tests Must be FAIR

When you write unit tests, keep in mind that the tests must be
FAIR, that is, fast, automated, isolated, and repeatable.

Tests must be fast. As you evolve your code and refactor, you
want to quickly get feedback that the code continues to meet
your expectations. If the tests are slow, your developers won’t
bother to run them. You want a very quick edit-and-run cycle.

Tests must be automated. Manual testing is tiring, is error
prone, and will take your time away from important tasks on
which you’re focusing. Automated tests are like angels on your
shoulder—they watch you quietly as you write code and whis-
per in your ears (only) if your code violates set expectations.
They give you early feedback if your code begins to fall apart.
You’d probably agree that you’d much rather hear from your
computer that your code sucks than from your co-worker. Auto-
mated unit tests make you look good and dependable. For
example, when you say you’re done, you know your code
works as intended.

Tests must be isolated. When you got 1,031 compilation errors,
the usual problem was a missed semicolon, right? That was not
helpful; there’s no point in one small error cascading into sev-
eral reported errors. You want a direct correlation between a
creeping bug or error and a failed test case. That will help
you identify and fix problems quickly rather than being over-
whelmed by large failed tests. Isolation will ensure that one test
does not leave behind a residual state that may affect another
test. It also allows you to run the tests in any order and also to
run either all, one, or a select few tests as you desire.

Tests must be repeatable. You must be able to run the tests any
number of times and get deterministic predictable results. The
worst kind of test is the one that fails on one run and passes on
a following run with no change to any code. Threading issues,
for example, may bring about some of these issues. As another
example, if a test inserts data with unique column constraints
into a database, then a subsequent run of the same test with-
out cleaning up a database will fail. This will not happen, how-
ever, and the test will be repeatable if the test rolls back the
transaction. The repeatability of tests is key to staying sane while
you rapidly evolve your application code.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=237

UNIT TESTING JAVA AND GROOVY CODE 238

You can also call junit.swingui.TestRunner’s run() method and provide it

your Groovy test class name to run your tests within the Swing GUI

to see those red-green bars.

You may use any of the assert methods that you’re already familiar

with in JUnit. Groovy adds more assert methods for your convenience:

assertArrayEquals(), assertLength(), assertContains(), assertToString(), assertIn-

spect(), assertScript(), and shouldFail(), to mention a few.

When writing unit tests, consider writing three types of tests: positive,

negative, and exception. Positive tests help ensure that code is behaving

as expected. You can call this the test of the happy path. You deposit

$100 and check whether the balance did go up by $100. Negative tests

check whether the code handles, as you expect, the failure of precondi-

tions, invalid input, and so on. You make the deposit amount negative

and see what the code does. What if the account is closed? Exception

tests help determine whether the code is throwing the right exceptions

and behaving as expected when exceptional situations arise. What if an

automated withdrawal kicks in after an account is closed? Trust me on

this one—I had a creative bank that did just that. Thinking about tests

in terms of these types of tests helps you think through the logic you’re

implementing. You handle not only code that implements logic but also

consider boundary conditions and edge cases that often get you into

trouble.

You can easily implement positive tests by using the asserts provided

in Groovy and JUnit. Implementing negative tests and exception tests

needs a bit more work, but Groovy has a mechanism to help you, as

you’ll see in Section 16.3, Testing for Exceptions, on page 240.

Even if your main project code is in Java, consider writing your test

code in Groovy. Since Groovy is lightweight, you’ll find it is easier,

faster, and fun to write your tests in Groovy while your main code is

in Java. This is also a nice way to practice Groovy on your Java-intense

projects.

Suppose you have a Java class Car, as shown below, in the src directory.

Also suppose that you’ve compiled it into the classes directory using

javac.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=238

UNIT TESTING JAVA AND GROOVY CODE 239

Car.class resides in the classes/com/agiledeveloper directory.

Download UnitTestingWithGroovy/src/Car.java

// Java code

package com.agiledeveloper;

public class Car

{

private int miles;

public int getMiles() { return miles; }

public void drive(int dist)

{

miles += dist;

}

}

You can write a unit test for this class in Groovy, and you don’t have to

compile the test code to run it. Here are a few positive tests for the Car.

These tests are in a file named CarTest.groovy in the test directory.

Download UnitTestingWithGroovy/test/CarTest.groovy

class CarTest extends GroovyTestCase

{

def car

void setUp()

{

car = new com.agiledeveloper.Car()

}

void testInitialize()

{

assertEquals 0, car.miles

}

void testDrive()

{

car.drive(10)

assertEquals 10, car.miles

}

}

The setUp() method and the corresponding tearDown() method (not

shown in the previous example) sandwich each test call. You can ini-

tialize objects in setUp() and optionally clean up or reset in tearDown().

These two methods help you avoid duplicating code and, at the same

time, help isolate the tests from each other.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/src/Car.java
http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/test/CarTest.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=239

TESTING FOR EXCEPTIONS 240

To run this test, type the command groovy -classpath classes test/CarTest.

You should see the following output:

..

Time: 0.003

OK (2 tests)

This output shows that two tests were executed, and both, not surpris-

ingly, passed. The first test confirmed that the Car has zero miles to

begin with, and driving a certain distance increases the miles by that

distance. Now, write a negative test:

void testDriveNegativeInput()

{

car.drive(-10)

assertEquals 0, car.miles

}

You set the parameter for drive() to the negative value -10. You decide

that the Car must ignore your drive request in this case, so you expect

the miles value to be unchanged. The Java code, however, does not

handle this condition. It modifies the miles without checking the input

parameter. When you run the previous test, you will get an error:

...F

Time: 0.004

There was 1 failure:

1) testDriveNegativeInput(CarTest)

junit.framework.AssertionFailedError:

expected:<0> but was:<-10>

...

FAILURES!!!

Tests run: 3, Failures: 1, Errors: 0

This output shows that the two positive tests passed, but the negative

test failed. You can now fix the Java code to handle this case property

and rerun your test. You can see that using Groovy to test your Java

code is pretty straightforward and simple.

16.3 Testing for Exceptions

Let’s now look at writing exception tests. One way to write them is to

wrap your method in try-catch blocks. If the method throws the expected

exception, that is, if you land in the catch block, all is well.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=240

MOCKING 241

If the code does not thrown any exceptions, you’ll invoke fail() to indicate

the failure of the test, as shown here:

Download UnitTestingWithGroovy/ExpectException.groovy

try

{

divide(2, 0)

fail "Expected ArithmeticException ..."

}

catch(ArithmeticException ex)

{

assertTrue true // Success

}

The previous code is Java-style JUnit testing and works with Groovy

as well. However, Groovy makes it easier to write exception tests by

providing a method shouldFail() that elegantly wraps up the boilerplate

code. Let’s use that to write an exception test:

Download UnitTestingWithGroovy/ExpectException.groovy

shouldFail { divide(2, 0) }

The method shouldFail() accepts a closure. It invokes the closure in a

guarded try-catch block. If no exception is thrown, it raises an exception

by calling the fail() method. If you’re interested in catching a specific

exception, you can specify that information to the shouldFail() method:

Download UnitTestingWithGroovy/ExpectException.groovy

shouldFail(ArithmeticException) { divide(2, 0) }

In this case, shouldFail() expects the closure to throw ArithmeticException.

If the code throws ArithmeticException or something that extends it, it is

happy. If some other exception is thrown or if no exception is thrown,

then shouldFail() fails. You can take advantage of Groovy’s flexibility with

parentheses5 and write the previous call as follows:

Download UnitTestingWithGroovy/ExpectException.groovy

shouldFail ArithmeticException, { divide(2, 0) }

16.4 Mocking

It’s very hard, if not impossible, to unit test a piece of large code6 that

has dependencies. One advantage of unit testing is that it forces you

5. See Section 18.8, The Parentheses Limitation and a Workaround, on page 285.
6. “What’s large code?” Any code you can’t see entirely without scrolling down in an

editor window is large—no, don’t make your font size smaller now.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/ExpectException.groovy
http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/ExpectException.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=241

MOCKING 242

Code

Under

Test

Interface

Mock

Code

You

Depend

On

Test

Test

Test

Figure 16.1: Mocking during unit testing

to make the unit of code smaller. Smaller code is cohesive code. It also

forces you to decouple the code from its surroundings. This means less

coupling. A collateral advantage of unit testing is higher cohesion and

lower coupling, which are qualities of good design. We’ll discuss ways

to deal with dependency in this section and ways to unit test code with

dependencies in the rest of this chapter.

Coupling comes in two forms. There’s code that depends on your code,

and there’s code that your code depends on. You need to address both

types of coupling before you can unit test your code.

The code being tested has to be separated or decoupled from where it

is used within an application. Suppose you have some logic in a button

handler within the GUI. It’s hard to unit test that logic. So, you have to

separate this code, into a method, for you to unit test it.

Suppose you have logic that heavily depends on some resource. That

resource may be slow to respond, expensive to use, unpredictable in

behavior, or currently being developed. Thus, you have to separate that

dependency from your code before you can effectively unit test your

code. This is where stubs and mocks help.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=242

MOCKING 243

Stubs vs. Mocks

In the article “Mocks Aren’t Stubs,” (http://martinfowler.com/

articles/mocksArentStubs.html), Martin Fowler discusses the differ-
ence between stubs and mocks. A stub stands in for a real
object. It simply reciprocates the coached expected response
when called by the code being tested. The response is set up
to satisfy the needs for the test to pass. A mock object does
a lot more than a stub. It helps you ensure your code is inter-
acting with its dependencies, the collaborators, as expected.
It can keep track of the sequence and number of calls your
code makes on the collaborator it stands in for. It ensures proper
parameters are passed in to method calls. While stubs verify
state, mocks verify behavior. When you use a mock in your test,
it verifies not only the state but also the behavior of the interac-
tion of your code with its dependencies.

Groovy provides support for creating both stubs and mocks, as
you will see in Section 16.10, Mocking Using the Groovy Mock
Library, on page 254.

The code that your code depends on is called a collaborator—your code

collaborates with it to get its work done. The collaborator can be an

object, a component, a layer, or a subsystem. It can be local, it can be

kept internal to your object, it can be passed in as a parameter, or it

can even be remote. Your object can’t function without the collaborator.

However, you need to creatively replace it for the sake of testing.

A mock stands in for the collaborator—the real object (see the sidebar

on this page). It does not do any real work. It simply gives expected

response to calls from your code in order to get the test working.

When running your application, you want your code to depend on the

real object it needs. This is also the case when integration testing your

application. However, when unit testing, you want your code to instead

depend on the mock. So, you need to find a way to switch the depen-

dency of your code from a mock to real object.

In a statically typed language like Java, you can achieve this switching

by using an interface, as shown in Figure 16.1, on the previous page.

There are frameworks in Java—such as EasyMock, JMock, and so on—

that make mocking easier. Some of these, like JMock, even allow you to

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=243

MOCKING BY OVERRIDING 244

mock a class without you having to create an interface. Using a proxy-

based mechanism, they intercept your call and route your request to

the mock instead of the real dependent object.

Groovy’s dynamic nature and metaprogramming capabilities provide a

great advantage in this area. There are a few ways to create mocks in

Groovy. You can use the following:

• Method overriding

• Categories

• ExpandoMetaClass

• Expando

• Map

• Groovy’s mock library

We’ll discuss techniques to create and use mocks in Groovy in the rest

of this chapter.

16.5 Mocking by Overriding

Suppose you have a class that depends on a method that does some

significant work and takes substantial time and resources, such as the

following myMethod():

Download UnitTestingWithGroovy/com/agiledeveloper/CodeWithHeavierDependencies.groovy

package com.agiledeveloper

public class CodeWithHeavierDependencies

{

public void myMethod()

{

def value = someAction() + 10

println(value)

}

int someAction()

{

Thread.sleep(5000) // simulates time consuming action

return Math.random() * 100 // Simulated result of some action

}

}

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/com/agiledeveloper/CodeWithHeavierDependencies.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=244

MOCKING BY OVERRIDING 245

You’re interested in testing myMethod() (which belongs to CodeWith-

HeavierDependencies). However, the method depends on someAction(),

which simulates a time- and resource-consuming operation.

If you simply write a unit test for myMethod(), it will be slow. There is yet

another problem—you can’t assert any result from a call to myMethod()

because it doesn’t return anything. Instead, it prints a value to stan-

dard output. You need to figure out a way to capture what it prints and

assert that. So, you have a method that is hard to test; it’s slow and

complicated.

One way to address these concerns is to override the offending meth-

ods. Here’s how:

Download UnitTestingWithGroovy/TestByOverriding.groovy

import com.agiledeveloper.CodeWithHeavierDependencies

class TestCodeWithHeavierDependenciesUsingOverriding extends GroovyTestCase

{

void testMyMethod()

{

def testObj = new CodeWithHeavierDependenciesExt()

testObj.myMethod()

assertEquals 35, testObj.result

}

}

class CodeWithHeavierDependenciesExt extends CodeWithHeavierDependencies

{

def result

int someAction() { return 25 }

def println(text) { result = text }

}

The output from the previous code is as follows:

.

Time: 0.015

OK (1 test)

In this code, you created a new class called CodeWithHeavierDependen-

ciesExt—a mock—that extends class CodeWithHeavierDependencies. In

this class, you mocked the methods someAction and println() (you took

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestByOverriding.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=245

MOCKING BY OVERRIDING 246

advantage of the Groovy convention to call System.out.println() simply as

println() and provided a local implementation of println()—savvy?). Go

ahead and run this test code and see how it succeeds. There’s no delay

in running the test and no messing with standard output.

You are still testing behavior, but by taking the nondeterministic behav-

ior and making it deterministic, you’re able to write an assertion against

it. Find a clever way to mock out dependencies so you can focus on unit

testing the behavior of your code.

In the previous example, you tested a method in a Groovy class. You

can use this approach for testing Java classes as well.

Mocking by overriding your own Java methods such as someAction()

is not a problem. However, unlike the Groovy code that called println(),

the Java code would be calling System.out.println(). So, creating a println()

in your mock derived class will not help. However, you can extend

PrintStream and replace System.out. Let’s take a look at a Java class that

is equivalent to the previous Groovy code you tested:

Download UnitTestingWithGroovy/com/agiledeveloper/JavaCodeWithHeavierDependencies.java

package com.agiledeveloper;

public class JavaCodeWithHeavierDependencies

{

public int someAction()

{

try

{

Thread.sleep(5000); // simulates time consuming action

}

catch(InterruptedException ex) {}

return (int) (Math.random() * 100); // Simulated result of some action

}

public void myMethod()

{

int value = someAction() + 10;

System.out.println(value);

}

}

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/com/agiledeveloper/JavaCodeWithHeavierDependencies.java
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=246

MOCKING BY OVERRIDING 247

The Groovy code to test the previous Java code is as follows:

Download UnitTestingWithGroovy/TestJavaByOverride.groovy

import com.agiledeveloper.JavaCodeWithHeavierDependencies

class TestCodeWithHeavierDependenciesUsingOverriding extends GroovyTestCase

{

void testMyMethod()

{

def testObj = new ExtendedJavaCode()

def originalPrintStream = System.out

def printMock = new PrintMock()

System.out = printMock

try

{

testObj.myMethod()

}

finally { System.out = originalPrintStream }

assertEquals 35, printMock.result

}

}

class ExtendedJavaCode extends JavaCodeWithHeavierDependencies

{

int someAction() { return 25 }

}

class PrintMock extends PrintStream

{

PrintMock() { super(System.out) }

def result

void println(int text) { result = text }

}

The output from the previous code is the expected result of the test

passing:

.

Time: 0.026

OK (1 test)

myMethod(), the method being tested, is part of the JavaCodeWithHeav-

ierDependencies class. You created ExtendedJavaCode to extend that

class and overrode the someAction() method. You also created a class

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestJavaByOverride.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=247

MOCKING USING CATEGORIES 248

PrintMock that extends PrintStream and assigned an instance of that to

System.out. This helps intercept the call to System.out.println() and directs

it to your mock implementation.

16.6 Mocking Using Categories

In Section 14.1, Injecting Methods Using Categories, on page 203, we

discussed how categories provide controlled AOP in Groovy. In this sec-

tion, you’ll see how you can use it to create mocks:

Download UnitTestingWithGroovy/TestUsingCategories.groovy

import com.agiledeveloper.CodeWithHeavierDependencies

class TestUsingCategories extends GroovyTestCase

{

void testMyMethod()

{

def testObj = new CodeWithHeavierDependencies()

use(MockHelper)

{

testObj.myMethod()

assertEquals 35, MockHelper.result

}

}

}

class MockHelper

{

def static result

def static println(self, text) { result = text }

def static someAction(CodeWithHeavierDependencies self) { 25 }

}

MockHelper has two static methods, one for each method you want to

mock—someAction() and println(). Within the test, you ask the category

to intercept calls to methods and substitute these two methods where

appropriate by using use(MockHelper). This is much like the advice used

in AOP.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingCategories.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=248

MOCKING USING EXPANDOMETACLASS 249

The output from the previous bit of code is a reassuring pass of the

test, as shown here:

.

Time: 0.027

OK (1 test)

Categories are useful only with Groovy code. It does not help to mock

methods called from within compiled Java code.

The overriding approach you saw in Section 16.5, Mocking by Overrid-

ing, on page 244 is useful for both Java and Groovy code. However, the

overriding approach can’t be used if the class being tested is final. The

categories approach shines in this case.

16.7 Mocking Using ExpandoMetaClass

Another way to intercept method calls in Groovy is to use the Expando-

MetaClass (cf. Section 14.2, Injecting Methods Using ExpandoMetaClass,

on page 208 and Section 14.3, Injecting Methods into Specific Instances,

on page 212). You don’t have to create a separate class as in the two

approaches you’ve seen so far. Instead, create a closure for each method

you want to mock, and set that into MetaClass for the instance being

tested. Let’s take a look at an example.

Create a separate instance of ExpandoMetaClass for the instance being

tested. This MetaClass will carry the mock implementation of collabora-

tor methods.

In this example, shown in the following code, you create a closure for

mocking println() and set that into an instance of ExpandoMetaClass for

ClassWithHeavierDependencies in line number 9. Similarly, you create a

closure for mocking someAction() in line number 10. The advantage of

creating an instance of ExpandoMetaClass specifically for the instance

under test is that you don’t globally affect the metaclass for CodeWith-

HeavierDependencies. So, if you have other tests, the method you mock

does not affect them (remember to keep the tests isolated from each

other).

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=249

MOCKING USING EXPANDOMETACLASS 250

Download UnitTestingWithGroovy/TestUsingExpandoMetaClass.groovy

Line 1 import com.agiledeveloper.CodeWithHeavierDependencies
-

- class TestUsingExpandoMetaClass extends GroovyTestCase
- {
5 void testMyMethod()
- {
- def result
- def emc = new ExpandoMetaClass(CodeWithHeavierDependencies)
- emc.println = { text -> result = text }

10 emc.someAction = { -> 25 }
- emc.initialize()
-

- def testObj = new CodeWithHeavierDependencies()
- testObj.metaClass = emc

15

- testObj.myMethod()
-

- assertEquals 35, result
- }

20 }

The output from the previous code again confirms that the test passes:

.

Time: 0.031

OK (1 test)

In this example, when myMethod() calls the two methods—println() and

someAction()—the ExpandoMetaClass intercepts those calls and routes

them to your mock implementation. Again, this is similar to the advice

on AOP.

Compared to the previous two approaches, creating the mock, setting

up its expectations, and using it in the test are nicely contained within

the test method in this case. There are no additional classes to create.

If you have other tests, you can create the mocks necessary to satisfy

those tests in a concise way.

This approach of using ExpandoMetaClass for mocking is useful only

with Groovy code. It does not help to mock methods called from within

precompiled Java code.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingExpandoMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=250

MOCKING USING EXPANDO 251

16.8 Mocking Using Expando

So far in this chapter you looked at ways to mock instance methods

called from within another instance method. In the rest of this chapter,

you’ll look at ways to mock other objects on which your code depends.

Let’s take a look at an example. Suppose the methods of a class you’re

interested in testing depend on a File. That’ll make it hard to write a

unit test. So, you need to find ways to mock this object so your unit

tests on your class can be quick and automated:

Download UnitTestingWithGroovy/com/agiledeveloper/ClassWithDependency.groovy

package com.agiledeveloper

public class ClassWithDependency

{

def methodA(val, file)

{

file.write "The value is ${val}."

}

def methodB(val)

{

def file = new java.io.FileWriter("output.txt")

file.write "The value is ${val}."

}

def methodC(val)

{

def file = new java.io.FileWriter("output.txt")

file.write "The value is ${val}."

file.close()

}

}

In this code, you have three methods with different flavors of dependen-

cies. methodA() receives an instance of what appears to be a File. The

other two methods, methodB() and methodC(), instantiate an instance

of FileWriter internally. The Expando class will help you with the first

method only. So, consider only methodA() in this section. We’ll see

how to test the other two methods in Section 16.10, Mocking Using

the Groovy Mock Library, on page 254.

methodA() writes a message to the given File object using its write()

method. Your goal is to test methodA(), but without actually having

to write to a physical file and then reading its contents back to assert.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/com/agiledeveloper/ClassWithDependency.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=251

MOCKING USING EXPANDO 252

You can take advantage of Groovy’s dynamic typing here because

methodA() does not specify the type of its parameter. So, you can send

any object that can fulfill its capability, such as the write() method (see

Section 4.4, Design by Capability, on page 80). Let’s do that now. Cre-

ate a class HandTossedFileMock with the write() method. You don’t have

to worry about all the properties and methods that the real File class

has. All you care about is what the method being tested really calls.

The code is as follows:

Download UnitTestingWithGroovy/TestUsingAHandTossedMock.groovy

import com.agiledeveloper.ClassWithDependency

class TestWithExpando extends GroovyTestCase

{

void testMethodA()

{

def testObj = new ClassWithDependency()

def fileMock = new HandTossedFileMock()

testObj.methodA(1, fileMock)

assertEquals "The value is 1.", fileMock.result

}

}

class HandTossedFileMock

{

def result

def write(value) { result = value }

}

The output from the previous code confirms a passing test:

.

Time: 0.015

OK (1 test)

In this code, the mock implementation of write() that you created within

HandTossedFileMock simply saves the parameter it receives into a result

property. You’re sending an instance of this mock class to methodA()

instead of the real File. methodA() is quite happy to use the mock, thanks

to dynamic typing.

That was not too bad; however, it would be great if you did not have

to hand-toss that separate class. This is where Expando comes in (see

Section 15.1, Creating Dynamic Classes with Expando, on page 224).

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingAHandTossedMock.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=252

MOCKING USING MAP 253

Simply tell an instance of Expando to hold a property called text and a

mock implementation of the write() method. Then pass this instance to

methodA(). Let’s look at the code:

Download UnitTestingWithGroovy/TestUsingExpando.groovy

import com.agiledeveloper.ClassWithDependency

class TestUsingExpando extends GroovyTestCase

{

void testMethodA()

{

def fileMock = new Expando(text: '', write: { text = it })

def testObj = new ClassWithDependency()

testObj.methodA(1, fileMock)

assertEquals "The value is 1.", fileMock.text

}

}

The output is as follows:

.

Time: 0.022

OK (1 test)

In both the previous examples, no real physical file was created when

you called methodA(). The unit test runs fast, and you don’t have any

files to read or clean up after the test.

Expando is useful when you pass the dependent object to the method

being tested. If, on the other hand, the method is creating the depen-

dent object internally (such as the methods methodB() and methodC()),

it is of no help. We’ll address this in Section 16.10, Mocking Using the

Groovy Mock Library, on the next page.

16.9 Mocking Using Map

You saw an example of using Expando as a mock object. You can also

use a Map. A map, as you know, has keys and associated values. The

values can be either objects or even closures. You can take advantage

of this to use a Map in place of a collaborator.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingExpando.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=253

MOCKING USING THE GROOVY MOCK LIBRARY 254

Here’s a rewrite of the example using Expando from Section 16.8, Mock-

ing Using Expando, on page 251, this time using a Map:

Download UnitTestingWithGroovy/TestUsingMap.groovy

import com.agiledeveloper.ClassWithDependency

class TestUsingMap extends GroovyTestCase

{

void testMethodA()

{

def text = ''

def fileMock = [write : { text = it }]

def testObj = new ClassWithDependency()

testObj.methodA(1, fileMock)

assertEquals "The value is 1.", text

}

}

The output is as follows:

.

Time: 0.029

OK (1 test)

Just like Expando, the Map is useful when you pass the dependent

object to the method being tested. It does not help if the collabora-

tor is created internally in the method being tested. We’ll address this

case next.

16.10 Mocking Using the Groovy Mock Library

Groovy’s mock library implemented in the groovy.mock.interceptor pack-

age is useful to mock deeper dependencies, that is, instances of collab-

orators/dependent objects created within the methods you’re testing.

StubFor and MockFor are two classes that take care of this. Let’s look at

them one at a time.

StubFor and MockFor are intended to intercept calls to methods like cat-

egories do (see Section 16.6, Mocking Using Categories, on page 248).

However, unlike categories, you don’t have to create separate classes

for mocking. Introduce the mock methods on instances of StubFor or

MockFor, and these classes take care of replacing the MetaClass for the

object you’re mocking.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingMap.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=254

MOCKING USING THE GROOVY MOCK LIBRARY 255

In the sidebar on page 243, I discussed the difference between stubs

and mocks. Let’s start with an example using StubFor to understand

the strengths and weaknesses of stubs. Then we’ll take a look at the

advantage mocks offer by using MockFor.

Using StubFor

Let’s use Groovy’s StubFor to create stubs for the File class:

Download UnitTestingWithGroovy/TestUsingStubFor.groovy

Line 1 import com.agiledeveloper.ClassWithDependency
-

- class TestUsingStubFor extends GroovyTestCase
- {
5 void testMethodB()
- {
- def testObj = new ClassWithDependency()
-

- def fileMock = new groovy.mock.interceptor.StubFor(java.io.FileWriter)
10 def text

- fileMock.demand.write { text = it.toString() }
- fileMock.demand.close {}
-

- fileMock.use
15 {

- testObj.methodB(1)
- }
-

- assertEquals "The value is 1.", text
20 }

- }

When creating an instance of StubFor, you provided the class you’re

interested in stubbing, in this case the java.io.FileWriter. You then created

a closure for the stub implementation of the write() method. On line

number 14, you called the use() method on the stub. At this time, it

replaces the MetaClass of FileWriter with a ProxyMetaClass. Any call to an

instance of FileWriter from within the attached closure will be routed to

the stub.

Stubs and mocks, however, do not help intercept calls to constructors.

So, in the previous example, the constructor of FileWriter is called, and

it ends up creating a file named output.txt on the disk.

StubFor helped you test whether your method, methodB(), is creating

and writing the expected content to it. However, it has one limitation. It

failed to test whether the method was well behaved by closing the file.

Even though you demanded the close() method on the stub, it ignored

checking whether close() was actually called. The stub simply stands in

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingStubFor.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=255

MOCKING USING THE GROOVY MOCK LIBRARY 256

for the collaborator and verifies the state. To verify behavior, you have

to use a mock (see the sidebar on page 243), specifically, the MockFor

class.

Using MockFor

Let’s take the previous test code and make one change to it:

Download UnitTestingWithGroovy/TestUsingMockFor.groovy

//def fileMock = new groovy.mock.interceptor.StubFor(java.io.FileWriter)

def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

You replaced StubFor with MockFor—that’s the only change. When you

run the test now, it fails, as shown here:

.F

Time: 0.093

There was 1 failure:

1) testMethod1(TestUsingStubFor)junit.framework.AssertionFailedError:

verify[1]: expected 1..1 call(s) to 'close' but was never called.

Unlike the stub, the mock tells you that even though your code pro-

duced the desired result, it did not behave as expected. That is, it did

not call the close() method that was set up in the expectation using

demand.

methodC() does the same thing as methodB(), but it calls close(). Let’s

test that method using MockFor:

Download UnitTestingWithGroovy/TestMethodCUsingMock.groovy

import com.agiledeveloper.ClassWithDependency

class TestMethodCUsingMock extends GroovyTestCase

{

void testMethodC()

{

def testObj = new ClassWithDependency()

def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

def text

fileMock.demand.write { text = it.toString() }

fileMock.demand.close {}

fileMock.use

{

testObj.methodC(1)

}

assertEquals "The value is 1.", text

}

}

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestUsingMockFor.groovy
http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TestMethodCUsingMock.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=256

MOCKING USING THE GROOVY MOCK LIBRARY 257

In this case, the mock tells you that it is quite happy with the collabo-

ration. The test passes, as shown here:

.

Time: 0.088

OK (1 test)

In the previous examples, the method under test created only one in-

stance of the object being mocked—FileWriter. What if the method cre-

ates more than one of these objects? The mock represents all of these

objects, and you have to create the demands for each of them. Let’s look

at an example of using two instances of FileWriter. The useFiles() method

in the following code copies the given parameter to the first file and

writes the size of the parameter to the second:

class TwoFileUser

{

def useFiles(str)

{

def file1 = new java.io.FileWriter("output1.txt")

def file2 = new java.io.FileWriter("output2.txt")

file1.write str

file2.write str.size()

file1.close()

file2.close()

}

}

Here’s the test for that code:

Download UnitTestingWithGroovy/TwoFileUserTest.groovy

class TwoFileUserTest extends GroovyTestCase

{

void testUseFiles()

{

def testObj = new TwoFileUser()

def testData = 'Multi Files'

def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

fileMock.demand.write() { assertEquals testData, it }

fileMock.demand.write() { assertEquals testData.size(), it }

fileMock.demand.close(2..2) {}

fileMock.use

{

testObj.useFiles(testData)

}

}

}

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TwoFileUserTest.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=257

MOCKING USING THE GROOVY MOCK LIBRARY 258

The output from running the previous test is as follows:

Download UnitTestingWithGroovy/TwoFileUserTest.output

.

Time: 0.091

OK (1 test)

The demands you created are to be satisfied collectively by both the

objects created in the method being tested. The mock is quite flexible

to support more than one object. Of course, if you have a lots of objects

being created, it can get hard to implement. The ability to specify mul-

tiplicity of calls, discussed next, may help in that case.

The mock keeps track of the sequence and number of calls to a method,

and if the code being tested does not exactly behave like the expectation

you have demanded, the mock raises an exception, failing the test.

If you have to set up expectations for multiple calls to the same method,

you can do that easily. Here is an example:

def someWriter()

{

def file = new FileWriter('output.txt')

file.write("one")

file.write("two")

file.write(3)

file.flush()

file.write(file.getEncoding())

file.close()

}

Suppose you care only to test the interaction between your code and

the collaborator. The expectation you need to set up is for three calls to

write(), followed by a call to flush(), a call to getEncoding(), then a call to

write(), and finally a call to close().

You can specify the cardinality or multiplicity of a call easily using a

range with demand. For example, mock.demand.write(2..4) {...} says that

you expect the method write() to be called at least two times, but no

more than four times. Let’s write a test for the previous method to see

how easy it is to express the expectations for multiple calls and the

return values and also assert that the parameter values received are

expected.

http://media.pragprog.com/titles/vslg/code/UnitTestingWithGroovy/TwoFileUserTest.output
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=258

MOCKING USING THE GROOVY MOCK LIBRARY 259

void testSomeWriter()

{

def fileMock = new groovy.mock.interceptor.MockFor(java.io.FileWriter)

fileMock.demand.write(3..3) {} // If you want to say upto 3 times, use 0..3

fileMock.demand.flush {}

fileMock.demand.getEncoding { return "whatever" } // return is optional

fileMock.demand.write { assertEquals 'whatever', it.toString() }

fileMock.demand.close {}

fileMock.use

{

testObj.someWriter()

}

}

In this example, the mock asserts that write() was called three times;

however, it failed to assert the parameters passed in. You can modify

the code to assert for parameters, as shown here:

def params = ['one', 'two', 3]

def index = 0

fileMock.demand.write(3..3) { assert it == params[index++] }

// If you want to say upto 3 times, use 0..3

Unit testing takes quite a bit of discipline. However, the benefits out-

weigh the cost. Unit testing is critical in dynamic languages that offer

greater flexibility.

In this chapter, I presented techniques for managing dependencies via

stubs and mocks. You can use Groovy to unit test your Java code. You

can use your existing unit testing and mock frameworks. You can also

override methods to mock your Groovy and Java code. To unit test your

Groovy code, you can use categories and ExpandoMetaClass. Both let

you mock by intercepting method calls. ExpandoMetaClass give you the

added advantages that you don’t have to create extra classes and that

your test is concise. For simple mocking of parameter objects, use Maps

or Expando. If you want to set up expectations for multiple methods

and mock dependencies that are internal to methods being tested, use

StubFor. To test the state as well as the behavior, use MockFor.

You saw how the dynamic nature of Groovy along with its metapro-

gramming capability makes unit testing a breeze. As you evolve your

code, refactor it, and get a better understanding of your application

requirements, unit testing with Groovy can help maintain your velocity

of development. It’ll give you confidence that your application is con-

tinuing to meet your expectations—use it as a carabiner as you ascend

through your application development complexities.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=259

Chapter 17

Groovy Builders
Builders are internal DSLs that provide ease in working with certain

types of problems. For instance, if you have a need to work with nested,

hierarchical structures, such as tree structures, XML representations,

or HTML representations, you’ll find builders to be very useful. Basi-

cally, builders provide syntax that does not tie you closely with the

underlying structure or implementation. They are facades because they

don’t replace the underlying implementation; instead, they provide an

elegant way to work with it.

Groovy provides builders for a number of everyday tasks, including

working with XML, HTML, DOM, SAX, Swing, and even Ant. In this

chapter, you’ll take a look at two of them—XML MarkupBuilder and Swing-

Builder—to get a flavor of the builders. You’ll then explore two techniques

to create your own builders.

17.1 Building XML

Most of us love to hate XML. Working with XML gets harder as the

document size gets larger, and also the tools and API support are not

pleasant. I have this theory about XML that it’s like humans. It starts

out cute when it’s small and gets annoying when it becomes bigger.

XML may be a fine format for machines to handle, but it’s rather un-

wieldy to work with directly. Basically, no one really wants to work with

XML, but you’re often forced to do so. Groovy alleviates this a great deal

by making working with XML almost fun.

BUILDING XML 261

Let’s take a look at an example of one way to create XML documents in

Groovy—using a builder:

Download UsingBuilders/UsingXMLBuilder.groovy

bldr = new groovy.xml.MarkupBuilder()

bldr.languages {

language(name: 'C++') { author('Stroustrup')}

language(name: 'Java') { author('Gosling')}

language(name: 'Lisp') { author('McCarthy')}

}

This code uses the groovy.xml.MarkupBuilder to create an XML document.

When you call arbitrary methods or properties on the builder, it kindly

assumes that you’re referring to either an element name or an attribute

name in the resulting XML document depending on the context of the

call. Here’s the output from the previous code:

<languages>

<language name='C++'>

<author>Stroustrup</author>

</language>

<language name='Java'>

<author>Gosling</author>

</language>

<language name='Lisp'>

<author>McCarthy</author>

</language>

</languages>

You called a method named languages() that does not exist on the

instance of the MarkupBuilder class. Instead of rejecting you, the builder

smartly assumed your call meant to define a root element of your XML

document, which is a rather nice assumption.

The closure attached to that method call now provides an internal con-

text. DSLs are context sensitive. Any nonexistent method called within

that closure is assumed to be a child element name. If you pass Map

parameters to the method calls (such as language(name: value)), they’re

treated as attributes of the elements. Any single parameter value (such

as author(value)) indicates element content instead of attributes. You

can study the previous code and the related output to see how the

MarkupBuilder inferred the code.

In the previous example, I hard-coded the data that I wanted to go into

my XML document, and also the builder wrote to the standard output.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingXMLBuilder.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=261

BUILDING XML 262

In a real project, neither of those conditions may be usual. I want data

to come from a collection that can be populated from a data source

or input stream. Also, I want to write out to a Writer instead of to the

standard output.

The builder can readily attach to a Writer that it can take as a construc-

tor argument. So, let’s attach a StringWriter to the builder. Let the data

for the document come from a map.1 Here’s an example that takes data

from a map, creates an XML document, and writes that into a String-

Writer:

Download UsingBuilders/BuildXML.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

writer = new StringWriter()

bldr = new groovy.xml.MarkupBuilder(writer)

bldr.languages {

langs.each { key, value ->

language(name: key) {

author (value)

}

}

}

println writer

The output from the previous code is as follows:

<languages>

<language name='C++'>

<author>Stroustrup</author>

</language>

<language name='Java'>

<author>Gosling</author>

</language>

<language name='Lisp'>

<author>McCarthy</author>

</language>

</languages>

The MarkupBuilder is quite adequate for small to medium documents.

However, if your document is large (a few megabytes), you can use

StreamingMarkupBuilder, which is kinder in memory usage. Let’s rewrite

1. The data may come from arbitrary source, for example, from a database. See Sec-

tion 10.2, Database Select, on page 166.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/BuildXML.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=262

BUILDING XML 263

the previous example using the StreamingMarkupBuilder, but to add some

flavor, let’s also include namespaces and XML comments:

Download UsingBuilders/BuildUsingStreamingBuilder.groovy

langs = ['C++' : 'Stroustrup', 'Java' : 'Gosling', 'Lisp' : 'McCarthy']

xmlDocument = new groovy.xml.StreamingMarkupBuilder().bind {

mkp.xmlDeclaration()

mkp.declareNamespace(computer: "Computer")

languages {

comment << "Created using StreamingMarkupBuilder"

langs.each { key, value ->

computer.language(name: key) {

author (value)

}

}

}

}

println xmlDocument

The output from the previous code is as follows:

<?xml version="1.0"?>

<languages xmlns:computer='Computer'>

<!--Created using StreamingMarkupBuilder-->

<computer:language name='C++'>

<author>Stroustrup</author>

</computer:language>

<computer:language name='Java'>

<author>Gosling</author>

</computer:language>

<computer:language name='Lisp'>

<author>McCarthy</author>

</computer:language>

</languages>

Using StreamingMarkupBuilder, you can declare namespaces, XML com-

ments, and so on, using the builder support property mkp. Once you

define a namespace, to associate an element with a namespace you

can use the dot notation on the prefix, such as computer.language where

computer is a prefix.

The builders for XML make the syntax easy and elegant. You don’t have

to deal with the pointy syntax of XML to create XML documents.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/BuildUsingStreamingBuilder.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=263

BUILDING SWING 264

17.2 Building Swing

The elegance of the builders concept is not restricted to XML structure.

Groovy provides a builder for creating Swing applications as well. When

working with Swing, you need to perform some mundane tasks such as

creating components (like buttons), registering event handlers, and so

on. Typically to implement an event handler, you write an anonymous

inner class and in the implementation handler methods receive param-

eters (such as ActionEvent) even if you don’t care for them. SwingBuilder

along with Groovy closures eliminates the drudgery.

You can use the nested or hierarchical structure provided by the builder

to create a container (such as JFrame) and its components (such as but-

tons, textboxes, and so on). Initialize components by using Groovy’s

flexible name-value pair initialization facility. Defining an event han-

dler is trivial. Simply provide it a closure. You’re building the familiar

Swing application, but you will find the code size is smaller. This helps

you quickly make changes, experiment, and get feedback. You’re still

using the underlying Swing API, but the syntax is a lot different. You’re

using the Groovy idioms2 to talk to Swing. Now, let’s create a Swing

application using the SwingBuilder class:

Download UsingBuilders/BuildSwing.groovy

bldr = new groovy.swing.SwingBuilder()

frame = bldr.frame(

title: 'Swing',

size: [50, 100],

layout: new java.awt.FlowLayout(),

defaultCloseOperation:javax.swing.WindowConstants.EXIT_ON_CLOSE

) {

lbl = label(text: 'test')

btn = button(text: 'Click me', actionPerformed: {

btn.text = 'Clicked'

lbl.text = "Groovy!"

})

}

frame.show()

The output from the previous code is shown in Figure 17.1, on the next

page.

2. See my blog about languages and idioms at http://tinyurl.com/2kpsm4.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/BuildSwing.groovy
http://tinyurl.com/2kpsm4
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=264

CUSTOM BUILDER USING METAPROGRAMMING 265

Figure 17.1: A little Swing application created using SwingBuilder

You initialized an instance of JFrame and assigned its title, size, and lay-

out, and you also set the default close operation, all in one simple state-

ment. This is equivalent to five separate statements in Java. Also, reg-

istering the event handler was as simple as providing a closure to the

actionPerformed property of button (for JButton). This eliminated the effort

in Java to create an anonymous inner class and implement the action-

Performed() method with the ActionEvent parameter. Sure, there was a

lot of syntax sugar, but the elegance and reduced code size makes it

easier to work with the Swing API.

You looked at SwingBuilder, which is a facade that brings Groovy ele-

gance and ease to building Swing applications. Similarly, SwingXBuilder

(see http://groovy.codehaus.org/SwingXBuilder) is a facade for the SwingX

UI library (for the SwingLabs extensions to the Swing library, see http://

swingx.dev.java.net). If you use JIDE (https://jide-oss.dev.java.net/), you can

use the JideBuilder (http://groovy.codehaus.org/JideBuilder) in Groovy.

Groovy’s GraphicsBuilder (http://groovy.codehaus.org/GraphicsBuilder)

provides a Groovy way of building JavaFX-type Java2D Graphics.

17.3 Custom Builder Using Metaprogramming

As I discussed earlier, builders provide you with a way to create an

internal DSL for specialized complex tasks that use nested or hierar-

chical structure or format. When working with a specialized task in

your application, explore to see whether a builder exists that can solve

the problem. If you don’t find any builders, you can create your own.

http://groovy.codehaus.org/SwingXBuilder
http://swingx.dev.java.net
http://swingx.dev.java.net
https://jide-oss.dev.java.net/
http://groovy.codehaus.org/JideBuilder
http://groovy.codehaus.org/GraphicsBuilder
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=265

CUSTOM BUILDER USING METAPROGRAMMING 266

You can create a custom builder in two ways. You can take up the entire

effort on your shoulders by using the metaprogramming capabilities of

Groovy, as you’ll see in this section. Alternately, you can use the Builder-

Support (Section 17.4, Using BuilderSupport, on page 268) or Factory-

BuilderSupport (Section 17.5, Using FactoryBuilderSupport, on page 272)

already provided in Groovy.

You’ll create a builder that builds a to-do list. Here’s the code that’s

using the builder you will create:

Download UsingBuilders/UsingTodoBuilder.groovy

bldr = new TodoBuilder()

bldr.build {

Prepare_Vacation (start: '02/15', end: '02/22') {

Reserve_Flight (on: '01/01', status: 'done')

Reserve_Hotel(on: '01/02')

Reserve_Car(on: '01/02')

}

Buy_New_Mac {

Install_QuickSilver

Install_TextMate

Install_Groovy {

Run_all_tests

}

}

}

The output of running the previous code (once you create the ToDo-

Builder) is as follows:

To-Do:

- Prepare Vacation [start: 02/15 end: 02/22]

x Reserve Flight [on: 01/01]

- Reserve Hotel [on: 01/02]

- Reserve Car [on: 01/02]

- Buy New Mac

- Install QuickSilver

- Install TextMate

- Install Groovy

- Run all tests

Completed tasks are marked with a x. Nesting of tasks is shown by

indentation, and task parameters such as start date are shown next to

their names.

In the previous DSL for the to-do list, you have created item names

such as “Reserve Car” using an underscore instead of space so you can

fit them as method names in Groovy. The only known method is build().

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingTodoBuilder.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=266

CUSTOM BUILDER USING METAPROGRAMMING 267

The rest—methods and properties—are handled using methodMissing()

and propertyMissing(), as shown next.

The result is mostly standard straightforward Groovy code with a good

use of metaprogramming. When a nonexistent method or property is

called, you assume it’s an item. You check whether a closure is attached

by testing the last parameter in args, obtained using the index -1. You

then set the delegate of the presented closure to the builder and invoke

the closure to traverse down the nested tasks.

Download UsingBuilders/TodoBuilder.groovy

class TodoBuilder

{

def level = 0

def result = new StringWriter()

def build(closure)

{

result << "To-Do:\n"

closure.delegate = this

closure()

println result

}

def methodMissing(String name, args)

{

handle(name, args)

}

def propertyMissing(String name)

{

Object[] emptyArray = []

handle(name, emptyArray)

}

def handle(String name, args)

{

level++

level.times { result << " "}

result << placeXifStatusDone(args)

result << name.replaceAll("_", " ")

result << printParameters(args)

result << "\n"

if (args.length > 0 && args[-1] instanceof Closure)

{

def theClosure = args[-1]

theClosure.delegate = this

theClosure()

}

http://media.pragprog.com/titles/vslg/code/UsingBuilders/TodoBuilder.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=267

USING BUILDERSUPPORT 268

level--

}

def placeXifStatusDone(args)

{

args.length > 0 && args[0] instanceof Map &&

args[0]['status'] == 'done' ? "x " : "- "

}

def printParameters(args)

{

def values = ""

if (args.length > 0 && args[0] instanceof Map)

{

values += " ["

def count = 0

args[0].each { key, value ->

if (key == 'status') return

count++

values += (count > 1 ? " " : "")

values += "${key}: ${value}"

}

values += "]"

}

values

}

}

Building your own custom builder as shown earlier is not difficult. Do

not hesitate to follow these steps. For very complex cases with deeper

nesting and extensive use of Map and regular parameters, BuilderSup-

port, which you will see next, may help.

17.4 Using BuilderSupport

You saw how to create a custom builder using methodMissing() and prop-

ertyMissing(). If you’re creating more than one builder, chances are you’d

refactor some of the method recognition code into a common base class.

That has been done for you already. The class BuilderSupport provides

convenience methods that recognize the node structure. Instead of writ-

ing the logic to deal with the structure, you simply listen to calls as

Groovy traverses the structure and takes appropriate action. Extend-

ing the abstract class BuilderSupport feels like working with SAX.3

3. Simple API for XML (SAX) is a popular event-driven parser for XML. It triggers events

on a handler your provide as it parses and recognizes elements and attributes in a docu-

ment.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=268

USING BUILDERSUPPORT 269

Let’s look at how to use the builder before figuring out how to imple-

ment it, in the spirit of finding out what it does before realizing how it

does it:

Download UsingBuilders/UsingTodoBuilderWithSupport.groovy

bldr = new TodoBuilderWithSupport()

bldr.build {

Prepare_Vacation (start: '02/15', end: '02/22') {

Reserve_Flight (on: '01/01', status: 'done')

Reserve_Hotel(on: '01/02')

Reserve_Car(on: '01/02')

}

Buy_New_Mac {

Install_QuickSilver

Install_TextMate

Install_Groovy {

Run_all_tests

}

}

}

The output of running the previous code (once you create the ToDo-

BuilderWithSupport) is as follows:

To-Do:

- Prepare Vacation [start: 02/15 end: 02/22]

x Reserve Flight [on: 01/01]

- Reserve Hotel [on: 01/02]

- Reserve Car [on: 01/02]

- Buy New Mac

- Install QuickSilver

- Install TextMate

- Install Groovy

- Run all tests

BuilderSupport expects you to implement two specific set of methods: set-

Parent() and overloaded versions of createNode(). Optionally you can

implement other methods such as nodeCompleted(). Remember the dif-

ferent options you have in calling a method; you can call a method

with no parameters (foo()), call it with some value (foo(6)), call it with

a map (foo(name:’Brad’, age: 12)), or call it with a map and a value

(foo(name:’Brad’, age:12, 6)). BuilderSupport provides four versions of creat-

eNode(), one for each of the previous options. The appropriate method

is called when you invoke methods on an instance of the builder. The

setParent() is called to let you (the author of the builder) know the parent

of the current node being processed. Whatever you return from creat-

eNode() is considered to be a node, and the builder support sends that

as a parameter to nodeCompleted().

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingTodoBuilderWithSupport.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=269

USING BUILDERSUPPORT 270

The BuilderSupport does not handle missing properties like it handles

methods. However, you can still use the propertyMissing() method to han-

dle those cases.

The code for the TodoBuilderWithSupport that extends the BuilderSupport is

shown next. The format for the to-do list chosen supports only method

calls with no parameters (and properties) and method calls that accept

a Map. So in the versions of createNode() that accept an Object param-

eter, you throw an exception to indicate an invalid format. In the other

two versions of that method, and in the propertyMissing() method, you

keep track of the level of nesting by incrementing the level variable.

You decrement level in the nodeCompleted() method since that’s called

when you leave a nesting level. In the createNode() methods, you return

the name of the node created so you can compare that in nodeCom-

pleted() to find when you exit the topmost node build. If your need is

more complex, alternately you can return an instance of your own cus-

tom class that represents different nodes. Also, if you need to perform

some other operations when a node is created—such as attaching the

child nodes to their parent—setParent() is a good place. This method

receives the instances of node for the parent and the child—the node

object returned by createNode() when those nodes were created. The

rest of the code for the TodoBuilderWithSupport is processing the nodes

found and creating the desired output.

Play with it to see which methods get called in which order. You can

insert a few println statements in these methods to get an understanding

of the sequence.

Download UsingBuilders/TodoBuilderWithSupport.groovy

class TodoBuilderWithSupport extends BuilderSupport

{

int level = 0

def result = new StringWriter()

void setParent(parent, child) {}

def createNode(name)

{

if (name == 'build')

{

result << "To-Do:\n"

return 'buildnode'

}

else

{

return handle(name, [:])

}

}

http://media.pragprog.com/titles/vslg/code/UsingBuilders/TodoBuilderWithSupport.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=270

USING BUILDERSUPPORT 271

def createNode(name, Object value)

{

throw new Exception("Invalid format")

}

def createNode(name, Map attribute)

{

handle(name, attribute)

}

def createNode(name, Map attribute, Object value)

{

throw new Exception("Invalid format")

}

def propertyMissing(String name)

{

handle(name, [:])

level--

}

void nodeCompleted(parent, node)

{

level--

if (node == 'buildnode')

{

println result

}

}

def handle(String name, attributes)

{

level++

level.times { result << " "}

result << placeXifStatusDone(attributes)

result << name.replaceAll("_", " ")

result << printParameters(attributes)

result << "\n"

name

}

def placeXifStatusDone(attributes)

{

attributes['status'] == 'done' ? "x " : "- "

}

def printParameters(attributes)

{

def values = ""

if(attributes.size() > 0)

{

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=271

USING FACTORYBUILDERSUPPORT 272

values += " ["

def count = 0

attributes.each { key, value ->

if (key == 'status') return

count++

values += (count > 1 ? " " : "")

values += "${key}: ${value}"

}

values += "]"

}

values

}

}

17.5 Using FactoryBuilderSupport

You’ll use FactoryBuilderSupport if you’re working with well-defined node

names such as button, checkbox, label, and so on, in the SwingBuilder.

The BuilderSupport you saw in Section 17.4, Using BuilderSupport, on

page 268 is good for working with hierarchical structures. However,

it’s not convenient to deal with different types of nodes. Suppose you

have to work with twenty different types of nodes. Your implementation

of createNode() will get complicated. Based on the name, you’ll create

different nodes, which leads to a messy switch statement. Chances are

you’ll quickly lean toward an abstract factory ([GHJV95]) approach to

create these nodes. That’s what FactoryBuilderSupport does. Based on the

node name, it delegates the node creation to different factories. All you

have to do is map the names to the factories.

FactoryBuilderSupport was inspired by the SwingBuilder, and in Groovy

1.5, SwingBuilder was modified to extend FactoryBuilderSupport instead

of BuilderSupport. Let’s take a look at an example of implementing and

using a builder that extends FactoryBuilderSupport.

Let’s create a builder named RobotBuilder that can create and program

a robot. As a first step, think about how you will use it:

Download UsingBuilders/UsingFactoryBuilderSupport.groovy

def bldr = new RobotBuilder()

def robot = bldr.robot('iRobot') {

forward(dist: 20)

left(rotation: 90)

forward(speed: 10, duration: 5)

}

robot.go()

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=272

USING FACTORYBUILDERSUPPORT 273

You’d like RobotBuilder to take that code and produce this output:

Robot iRobot operating...

move distance... 20

turn left... 90 degrees

move distance... 50

Now, let’s look at the builder. RobotBuilder extends FactoryBuilderSupport.

In its instance initializer, you map the node names robot, forward, and

left to the corresponding factories using FactoryBuilderSupport’s register-

Factory() method. That’s all you have in RobotBuilder. All the hard work

of traversing the hierarchy of nodes and calling the appropriate fac-

tory is done by the FactoryBuilderSupport. The factories and nodes, which

you’ll see soon, take care of the rest of the details:

Download UsingBuilders/UsingFactoryBuilderSupport.groovy

class RobotBuilder extends FactoryBuilderSupport

{

{

registerFactory('robot', new RobotFactory())

registerFactory('forward', new ForwardMoveFactory())

registerFactory('left', new LeftTurnFactory())

};

}

Classes Robot, ForwardMove, and LeftTurn, shown next, represent the

nodes robot, forward, and left, respectively.

Download UsingBuilders/UsingFactoryBuilderSupport.groovy

class Robot

{

String name

def movements = []

void go()

{

println "Robot $name operating..."

movements.each { movement -> println movement }

}

}

class ForwardMove

{

def dist

String toString() { "move distance... $dist"}

}

class LeftTurn

{

def rotation

String toString() { "turn left... $rotation degrees"}

}

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=273

USING FACTORYBUILDERSUPPORT 274

The Robot has a name property and an ArrayList of movements. Its go()

method traverses each movement and prints the details. The other two

classes, ForwardMove and LeftTurn, have one property each. Even though

the class ForwardMove has only one property named dist, in the code

shown at the beginning of this section you’ve assigned properties speed

and duration for the left node. The factory will take care of working with

these properties as you’ll see soon.

Let’s look at the factories. FactoryBuilderSupport relies upon the Factory

interface. This interface provides methods to control the creation of a

node, handles setting the node’s properties, sets the parent and child

relationships between nodes, and determines whether the node is a

leaf node. A default implementation of Factory called AbstractFactory is

already provided in Groovy, as shown here:

// Excerpt of AbstractFactory.java - part of Groovy

public abstract class AbstractFactory implements Factory

{

public boolean isLeaf() { return false; }

public boolean onHandleNodeAttributes(FactoryBuilderSupport builder,

Object node, Map attributes) { return true; }

public void onNodeCompleted(FactoryBuilderSupport builder,

Object parent, Object node) { }

public void setParent(FactoryBuilderSupport builder,

Object parent, Object child) { }

public void setChild(FactoryBuilderSupport builder,

Object parent, Object child) { }

}

The default implementation of isLeaf() returns false to indicate that the

node can have a closure with subnodes. The onHandleNodeAttributes() is

a good place for any special handling of properties, like the duration and

speed of the left node. Within this method, you’ll remove from attributes

any property that you have processed. If you return true, as in the

default implementation, FactoryBuilderSupport will populate any remain-

ing properties found in attributes into the node instance. The method

onNodeCompleted() is called when the processing of the node is com-

pleted, and you can perform any final operations at the end of node

creation you like. setParent() is called on the child node’s factory so you

can set up any parent-child relationship. Similarly, setChild() is called

on the parent node’s factory. The only method from Factory that’s miss-

ing in AbstractFactory is the newInstance() method that is responsible for

instantiating the actual node.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=274

USING FACTORYBUILDERSUPPORT 275

In this example, you need a factory for Robot, ForwardMove, and LeftTurn.

The classes RobotFactory, ForwardMoveFactory, and LeftTurnFactory are as

follows:

Download UsingBuilders/UsingFactoryBuilderSupport.groovy

class RobotFactory extends AbstractFactory

{

def newInstance(FactoryBuilderSupport builder, name, value, Map attributes)

{

new Robot(name: value)

}

void setChild(FactoryBuilderSupport builder, Object parent, Object child)

{

parent.movements << child

}

}

class ForwardMoveFactory extends AbstractFactory

{

boolean isLeaf() { true }

def newInstance(FactoryBuilderSupport builder, name, value, Map attributes)

{

new ForwardMove()

}

boolean onHandleNodeAttributes(FactoryBuilderSupport builder,

Object node, Map attributes) {

if (attributes.speed && attributes.duration)

{

node.dist = attributes.speed * attributes.duration

attributes.remove('speed')

attributes.remove('duration')

}

true

}

}

class LeftTurnFactory extends AbstractFactory

{

boolean isLeaf() { true }

def newInstance(FactoryBuilderSupport builder, name, value, Map attributes)

{

new LeftTurn()

}

}

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=275

USING FACTORYBUILDERSUPPORT 276

In each factory’s newInstance() method, you instantiate the appropri-

ate node. In the RobotFactory’s setChild(), you add the movement node

to Robot’s list of movements. Since forward and left are leaf nodes, in

their factory’s isLeaf() method you return true. You support the spe-

cial properties of the forward node in the ForwardMoveFactory’s onHandle-

NodeAttributes().

Let’s take a minute to see the benefit of the isLeaf() methods. In the

following example, you provide a closure to the forward node:

Download UsingBuilders/UsingFactoryBuilderSupport.groovy

def robotBldr = new RobotBuilder()

robotBldr.robot('bRobot') {

forward(dist: 20) { }

}

The FactoryBuilderSupport class realizes that the forward node can’t have

nested levels and so rejects it, as shown here:

java.lang.RuntimeException: 'forward' doesn't support nesting.

The implementation of a builder to deal with multiple well-defined

nodes is a lot cleaner with FactoryBuilderSupport than with BuilderSupport.

FactoryBuilderSupport provides other convenience methods to intercept

the life cycle of node creation, so you can take more control of the

node traversal, if you want. For example, you can use the preInstantiate()

method to perform actions before the factory creates a node, or you can

perform actions after a node is completed by overriding postNodeCom-

pletion(). If you have a need to perform other tasks while building, you

can use convenience methods like getCurrentNode() and getParentNode()

of FactoryBuilderSupport to easily work with the hierarchical structure

you’re creating. Refer to http://groovy.codehaus.org/FactoryBuilderSupport

as well as http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.

html for more details on the builder and its API.

In this chapter, you saw how to use Groovy’s builders. Builders provide

you with a DSL syntax to perform mundane tasks such as creating an

XML or HTML document. You can use one of the builders provided or

create your own custom builder, as you saw in this chapter. And if you

create a useful builder, consider contributing it to the community.

http://media.pragprog.com/titles/vslg/code/UsingBuilders/UsingFactoryBuilderSupport.groovy
http://groovy.codehaus.org/FactoryBuilderSupport
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=276

Chapter 18

Creating DSLs in Groovy
Domain-specific languages (DSLs) are “targeted at a particular type of

problem.”1 Their syntax is focused on the intended domain or problem.

You don’t use them for general-purpose programming like you use Java,

Groovy, or C++, because DSLs have a very limited scope and capability.

A DSL is small, simple,2 expressive, and focused on a problem area

or domain. DSLs have two characteristics: they’re context-driven and

fluent.

DSLs have been around for a long time. Chances are you’ve worked

with them in applications with special keyword input files used to com-

municate with external applications. Ant is an example of a DSL. Gant

(see Appendix A, on page 291 for reference) is also an example of a DSL.

Specifically, it’s a wrapper around Ant that uses Groovy instead of XML

to specify build tasks.

The dynamic nature of Groovy and its metaprogramming capabilities

makes it attractive for building DSLs. In this chapter, you’ll learn about

DSLs and how to use Groovy to build them.

18.1 Context

Context is one of the characteristics of a DSL. As humans, we rely

heavily on context when we communicate. We’re efficient, and context

provides for continuity in our conversations. The other day I heard my

1. See the reference to Marin Fowler’s discussions on DSLs in Appendix A, on page 291.
2. However, it may not be simple to design, though.

CONTEXT 278

friend Neal holler, “Venti latte with two extra shots!” He’s using the Star-

bucks DSL. Nowhere did he mention the word “coffee,” but he sure got a

very good one, at a high price. That’s context-driven. I heard my friend

Scott respond to a question, “Place a $ in a GString.” I have no doubt

he was teaching how to create a printable expression in Groovy3—that

again is context-driven.

Let’s look at Java code to order pizza. This code lacks context. The

reference joesPizza is used repeatedly:

Download CreatingDSLs/OrderPizza.java

//Java code

package com.agiledeveloper;

public class OrderPizza

{

public static void main(String[] args)

{

PizzaShop joesPizza = new PizzaShop();

joesPizza.setSize(Size.LARGE);

joesPizza.setCrust(Crust.THIN);

joesPizza.setTopping("Olives", "Onions", "Bell Pepper");

joesPizza.setAddress("101 Main St., ...");

int time = joesPizza.setCard(CardType.VISA, "1234-1234-1234-1234");

System.out.printf("Pizza will arrive in %d minutes\n", time);

}

}

The same code written in Groovy is less cluttered, thanks to the iden-

tity() method (see Section 8.1, Object Extensions, on page 141):

Download CreatingDSLs/OrderPizza.groovy

import com.agiledeveloper.*

PizzaShop joesPizza = new PizzaShop()

joesPizza.identity {

setSize(Size.LARGE)

setCrust(Crust.THIN)

setTopping("Olives", "Onions", "Bell Pepper")

setAddress("101 Main St., ...")

int time = setCard(CardType.VISA, "1234-1234-1234-1234")

printf("Pizza will arrive in %d minutes\n", time)

}

3. See Section 6.1, Literals and Expressions, on page 111.

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/OrderPizza.java
http://media.pragprog.com/titles/vslg/code/CreatingDSLs/OrderPizza.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=278

FLUENCY 279

Since parentheses are almost optional in Groovy (see Section 18.8, The

Parentheses Limitation and a Workaround, on page 285) and typing is

also optional, you can make the previous code a tad lighter:

Download CreatingDSLs/OrderPizza2.groovy

import com.agiledeveloper.*

PizzaShop joesPizza = new PizzaShop()

joesPizza.identity {

setSize Size.LARGE

setCrust Crust.THIN

setTopping "Olives", "Onions", "Bell Pepper"

setAddress "101 Main St., ..."

time = setCard(CardType.VISA, "1234-1234-1234-1234")

printf "Pizza will arrive in %d minutes\n", time

}

Context makes things terse (in a good way), less cluttered, and effective.

18.2 Fluency

Fluency is another characteristic of a DSL. It helps make code readable

and flow naturally. It’s not easy to design for fluency, but you should

do it so it’s easier on your users. We’ll now discuss some examples of

fluency and explore a few ways to write loops in Groovy:

Download CreatingDSLs/FluentLoops.groovy

// Traditional Looping

for(int i = 0; i < 10; i++)

{

println(i);

}

// Groovy ways

for(i in 0..9) { println i }

0.upto(9) { println it }

10.times { println it }

All the previous loops produce the same result. Groovy provides fluency

for looping, among other things. Fluency is not restricted to Groovy.

EasyMock (which inspired the Groovy mock library) exhibits fluency in

setting up the mock expectations in Java:

expect(alarm.raise()).andReturn(true);

expect(alarm.raise()).andThrow(new InvalidStateException());

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/OrderPizza2.groovy
http://media.pragprog.com/titles/vslg/code/CreatingDSLs/FluentLoops.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=279

TYPES OF DSLS 280

The previous code indicates that the alarm mock should return true on

the first call and throw an exception on the second.

You can find another good example of a DSL in Grails/GORM. For

example, you can specify data constraints on an object’s properties

using the following syntax:

class State

{

String twoLetterCode

static constraints = {

twoLetterCode unique: true, blank: false, size: 2..2

}

}

Grails smartly recognizes this fluent and expressive syntax for express-

ing the constraints and generates the validation logic both for the front

end and for the back end.

Groovy builders (see Chapter 17, Groovy Builders, on page 260) are

good examples of DSLs. They’re fluent and built on context.

18.3 Types of DSLs

When designing a DSL, you have to decide between two types—external

and internal.

An external DSL defines a new language. You have the flexibility to

choose the syntax. You then parse the commands in your new language

to take actions. When I took my first job, the company asked me to

maintain a DSL that needed extensive use of lex and yacc.4 The parsing

was a lot of “fun.” You can use languages such as C++ and Java that

do heavyweight lifting for you with the support of extensive parsing

capabilities and libraries. For example, you can use ANTLR to build

DSLs ([Par07]).

An internal DSL, also called an embedded DSL, defines a new language

as well but within the syntactical confines of another languages. You

don’t use any parsers, but you have to construe the syntax by tactfully

mapping to constructs such as methods and properties in the underly-

ing language. The users of your internal DSL might not realize they’re

4. I first thought they asked me to do it because I was good. I later understood they don’t

ask a new employee to do stuff because they’re good but because no one else wants to do

it!

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=280

DESIGNING INTERNAL DSLS 281

using syntax of a broader language. However, creating the internal DSL

takes significant design effort and clever tricks to make the underlying

language work for you.

I mentioned Ant and Gant earlier. Ant, which uses XML, is an example

of an external DSL. Gant, on the other hand, uses Groovy to solve the

same problem and is an example of an internal DSL.

18.4 Designing Internal DSLs

Dynamic languages are better suited to designing and implementing

internal DSLs. They have good metaprogramming capabilities and flex-

ible syntax, and you can easily load and execute code fragments.

Not all dynamic languages are created equal, however.

I find it very easy to create DSLs in Ruby, for example. It is dynamically

typed, parentheses are optional, the symbol (:) can be used instead of

double quoting strings, and so on. The elegance of Ruby heavily favors

creating internal DSLs.

Creating internal DSLs in Python can be a bit of a challenge. The sig-

nificant whitespace can be a hindrance.

Groovy’s dynamic typing and metaprogramming capabilities help a

great deal. However, it’s picky about parentheses and does not have

the elegant symbol that Ruby does. You will have to work around some

of these restrictions, as you’ll see later.

It takes significant time, patience, and effort to design an internal DSL.

So, be creative, tactfully work around issues, and be willing to compro-

mise at places to succeed in your design efforts.

18.5 Groovy and DSLs

Groovy has a number of key capabilities to help create internal DSLs,

including the following:

• Dynamic and optional typing (Section 4.5, Optional Typing, on

page 86).

• The flexibility to load scripts dynamically, manipulate, and exe-

cute (Section 11.6, Using Groovy Scripts from Groovy, on page 178).

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=281

CLOSURES AND DSLS 282

• Groovy classes are open, thanks to categories and ExpandoMeta-

Class (see Chapter 14, MOP Method Injection and Synthesis, on

page 202).

• Closures provide a nice context for execution (Chapter 5, Using

Closures, on page 92).

• Operator overloading helps freely define operators (Section 3.6,

Operator Overloading, on page 56).

• Builder support (Chapter 17, Groovy Builders, on page 260).

• Flexible parentheses.5

In the rest of this chapter, you’ll look at examples of creating DSLs in

Groovy using these capabilities.

18.6 Closures and DSLs

The identity() method helps delegate calls within a closure, giving you a

context of execution. You can take advantage of this approach to create

your own methods with context and fluency.

Let’s revisit the pizza-ordering example. Say you want to create a syntax

that flows naturally. You don’t want to create an instance of PizzaShop

because that is more of an implementation detail. You want the context

to be implicit. Let’s take a look at the following code (wait until the next

section to see how you can make this more fluent and context-driven):

Download CreatingDSLs/ClosureHelp.groovy

time = getPizza {

setSize Size.LARGE

setCrust Crust.THIN

setTopping "Olives", "Onions", "Bell Pepper"

setAddress "101 Main St., ..."

setCard(CardType.VISA, "1234-1234-1234-1234")

}

printf "Pizza will arrive in %d minutes\n", time

The getPizza() method accepts a closure within which you call methods

to order pizza using the instance methods of a PizzaShop class. However,

the instance of that class is implicit. The delegate (see Section 5.8,

5. This is useful and annoying at the same time. Groovy requires no parentheses for

calling methods that take parameters but insists on having them for methods with no

parameters. See Section 18.8, The Parentheses Limitation and a Workaround, on page 285

for a simple trick to work around this annoyance.

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/ClosureHelp.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=282

METHOD INTERCEPTION AND DSLS 283

Closure Delegation, on page 107) takes care of routing the methods

to the implicit instance, as you can see in the implementation of the

following getPizza() method:

Download CreatingDSLs/ClosureHelp.groovy

def getPizza(closure)

{

PizzaShop pizzaShop = new PizzaShop()

closure.delegate = pizzaShop

closure()

}

The output from executing the call to the getPizza() code is as follows:

Pizza will arrive in 25 minutes

Wait a second, how did you get the time value printed in the output?

Because the last statement in getPizza() was a call to the closure, what-

ever it returned, getPizza() returned. The last statement within the clo-

sure is setCard(), so its result was returned to the caller. This DSL

imposes ordering: the setCard() must be the last method called to order

pizza. You can work on improving the interface so the ordering is more

obvious. Also, you can replace calls to set methods like setSize Size.LARGE

with assignment statements like size = Size.LARGE, if you want.

18.7 Method Interception and DSLs

You can implement the DSL for ordering pizza without really using a

PizzaShop class. You can do that by purely intercepting method calls.

Let’s first start with the code to order pizza (stored in a file named

orderPizza.dsl):

Download CreatingDSLs/orderPizza.dsl

size large

crust thin

topping Olives, Onions, Bell_Pepper

address "101 Main St., ..."

card visa, '1234-1234-1234-1234'

It hardly looks like code. It looks more like a data file. However, that’s

pure Groovy code, and you’re going to execute it.6 But before that, you

have to perform a few tricks, er, I mean design your DSL.

6. Everything you see in that file, except the strings in double quotes, are either method

names or variable names.

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/ClosureHelp.groovy
http://media.pragprog.com/titles/vslg/code/CreatingDSLs/orderPizza.dsl
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=283

METHOD INTERCEPTION AND DSLS 284

Let’s create a file named GroovyPizzaDSL.groovy and in it define the vari-

ables large, thin, and visa (other variables like small, thick, masterCard can

be defined at will). Now define a method acceptOrder() that will call into

a closure that will eventually execute your DSL. Also implement the

methodMissing() method that will be called for any method that does not

exist (pretty much all methods called in your DSL file orderPizza.dsl).

Download CreatingDSLs/GroovyPizzaDSL.groovy

def large = 'large'

def thin = 'thin'

def visa = 'Visa'

def Olives = 'Olives'

def Onions = 'Onions'

def Bell_Pepper = 'Bell Pepper'

orderInfo = [:]

def methodMissing(String name, args)

{

orderInfo[name] = args

}

def acceptOrder(closure)

{

closure.delegate = this

closure()

println "Validation and processing performed here for order received:"

orderInfo.each { key, value ->

println "${key} -> ${value.join(', ')}"

}

}

You have to figure out a way to put these two files together and execute.

You can do that quite easily (see Section 11.6, Using Groovy Scripts

from Groovy, on page 178), as shown next. Invoke GroovyShell, load the

previous two scripts, form into a cohesive script, and evaluate.

Download CreatingDSLs/GroovyPizzaOrderProcess.groovy

def dslDef = new File('GroovyPizzaDSL.groovy').text

def dsl = new File('orderPizza.dsl').text

def script = """

${dslDef}

acceptOrder {

${dsl}

}

"""

new GroovyShell().evaluate(script)

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/GroovyPizzaDSL.groovy
http://media.pragprog.com/titles/vslg/code/CreatingDSLs/GroovyPizzaOrderProcess.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=284

THE PARENTHESES LIMITATION AND A WORKAROUND 285

The output from the previous code is as follows:

Validation and processing performed here for order received:

size -> large

crust -> thin

topping -> Olives, Onions, Bell Pepper

address -> 101 Main St., ...

card -> Visa, 1234-1234-1234-1234

As you can see, designing and executing a DSL in Groovy (as in order-

pizza.dsl) is pretty easy if you know how to exploit its MOP capabilities.

18.8 The Parentheses Limitation and a Workaround

Let’s leave the pizza example behind and move on to look at a simple

register. This section will show how to create a DSL for a simple register,

the device that lets you total amounts. Here is the first attempt to create

that:

Download CreatingDSLs/Total.groovy

value = 0

def clear() { value = 0 }

def add(number) { value += number }

def total() { println "Total is $value" }

clear()

add 2

add 5

add 7

total()

The output from the previous code is as follows:

Total is 14

In this code, you wrote total() and clear() instead of total and clear,

respectively. Let’s drop the parentheses and try to call total:

Download CreatingDSLs/Total.groovy

try

{

total

}

catch(Exception ex)

{

println ex

}

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/Total.groovy
http://media.pragprog.com/titles/vslg/code/CreatingDSLs/Total.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=285

CATEGORIES AND DSLS 286

Executing the previous code gives the following result:

org.codehaus.groovy.runtime.metaclass.MissingPropertyExceptionNoStack:

No such property: total for class: Total

Groovy thinks that the call to total refers to a (nonexistent) property.

Working with a language to design a DSL is like playing with a 2-year-

old: you don’t fight with the kid when he gets cranky; you go along

a little bit. So, in this case, tell Groovy that it’s OK and work with it.

Simply create the properties it wants:

value = 0

def getClear() { value = 0 }

def add(number) { value += number }

def getTotal() { println "Total is $value" }

You wrote properties with the names total and clear by writing the meth-

ods getTotal() and getClear(). Now, Groovy is quite happy (like the kid)

to play with us, and you can call these properties without parentheses:

clear

add 2

add 5

add 7

total

clear

total

The output from the previous code is as follows:

Total is 14

Total is 0

18.9 Categories and DSLs

Categories allow you to intercept method calls in a controlled fashion.7

You can put that to use in creating a DSL. Let’s figure out ways to

implement the following fluent call: 2.days.ago.at(4.30).

2 is an instance of Integer, and you know that days is not a property on it.

You’ll inject that, using categories, as a property (the getDays() method).

The days is just noise. It provides connectivity in the sentence “two days

ago at 4.30.” You can implement the method getDays() that accepts

Integer and returns the received instance. In the getAgo() method (for

the ago property), accept an instance of Integer, and return so many

7. See Section 14.1, Injecting Methods Using Categories, on page 203.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=286

CATEGORIES AND DSLS 287

days before the current date using the operations on the Calendar class.

Finally, in the at() method, set the time on that date to the time given,

and return an instance of Date. All this can be used within the use()

block, as shown in the following code:8

Download CreatingDSLs/DSLUsingCategory.groovy

class DateUtil

{

static int getDays(Integer self) { self }

static Calendar getAgo(Integer self)

{

def date = Calendar.instance

date.add(Calendar.DAY_OF_MONTH, -self)

date

}

static Date at(Calendar self, Double time)

{

def hour = (int)(time.doubleValue())

def minute = (int)(Math.round((time.doubleValue() - hour) * 100))

self.set(Calendar.HOUR_OF_DAY, hour)

self.set(Calendar.MINUTE, minute)

self.set(Calendar.SECOND, 0)

self.time

}

}

use(DateUtil)

{

println 2.days.ago.at(4.30)

}

The output from the previous code is as follows:

Thu Jan 31 04:30:00 MST 2008

A final concern with the DSL syntax created here is that you used

2.days.ago.at(4.30). It’s more natural to use 4:30 instead of 4.30, so it

would be nice to instead use 2.days.ago.at(4:30). Groovy allows you to

accept a Map as a parameter to methods.

8. I’m not performing error checking on the time you provide, so you can send 4.70 if

you’d like instead of 5:10; it’s an undocumented feature. Also, you may want to clone the

instance of Calendar given to you and modify the clone to avoid any side effects in other

places where you may use these methods.

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/DSLUsingCategory.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=287

CATEGORIES AND DSLS 288

By defining the parameter of the method ago() as Map instead of Double,

you can achieve that, as shown here:

Download CreatingDSLs/DSLUsingCategory2.groovy

class DateUtil

{

static int getDays(Integer self) { self }

static Calendar getAgo(Integer self)

{

def date = Calendar.instance

date.add(Calendar.DAY_OF_MONTH, -self)

date

}

static Date at(Calendar self, Map time)

{

def hour = 0

def minute = 0

time.each {key, value -> hour = key.toInteger()

minute = value.toInteger()

}

self.set(Calendar.HOUR_OF_DAY, hour)

self.set(Calendar.MINUTE, minute)

self.set(Calendar.SECOND, 0)

self.time

}

}

use(DateUtil)

{

println 2.days.ago.at(4:30)

}

The output from the previous code is as follows:

Thu Jan 31 04:30:00 MST 2008

The only restriction in this approach using categories is that you can

use the DSL only within the use() blocks. This may not be such a severe

restriction. It might actually be good because the method injection is

controlled. Once you leave the block of code, the methods injected are

forgotten, which might be desirable. In Section 18.10, ExpandoMeta-

Class and DSLs, on the next page, you will see how to implement the

same syntax using ExpandoMetaClass.

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/DSLUsingCategory2.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=288

EXPANDOMETACLASS AND DSLS 289

18.10 ExpandoMetaClass and DSLs

Categories take effect only within the use blocks, and their effect is

fairly limited in scope. If you want the method injection to be effective

throughout your application, you can use the ExpandoMetaClass instead

of categories. Let’s use ExpandoMetaClass to implement the DSL syntax

you saw in the previous section:

Download CreatingDSLs/DSLUsingExpandoMetaClass.groovy

Integer.metaClass.getDays = { ->

delegate

}

Integer.metaClass.getAgo = { ->

def date = Calendar.instance

date.add(Calendar.DAY_OF_MONTH, -delegate)

date

}

Calendar.metaClass.at = { Map time ->

def hour = 0

def minute = 0

time.each {key, value -> hour = key.toInteger()

minute = value.toInteger()

}

delegate.set(Calendar.HOUR_OF_DAY, hour)

delegate.set(Calendar.MINUTE, minute)

delegate.set(Calendar.SECOND, 0)

delegate.time

}

try

{

println 2.days.ago.at(4:30)

}

catch(Exception ex)

{

println ex

}

If you try to run this code, you will get an exception:

groovy.lang.MissingMethodException:

No signature of method: java.util.GregorianCalendar.at()

is applicable for argument types: (java.util.LinkedHashMap) values: {[4:30]}

The reason for this exception is that the method was added to the

interface Calendar, and by default ExpandoMetaClass does not provide

that to inheriting/implementing classes. One solution is to add the

at() method to the class GregorianCalendar. However, that would be

http://media.pragprog.com/titles/vslg/code/CreatingDSLs/DSLUsingExpandoMetaClass.groovy
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=289

EXPANDOMETACLASS AND DSLS 290

wrong in principle since you’re not supposed to know the details of

the implementation while working at the level of interfaces. You can

fix this problem by adding one line of code before any other code is

executed. Put the following at the top of the code and rerun the code:

ExpandoMetaClass.enableGlobally() (see Section 14.2, Injecting Methods

Using ExpandoMetaClass, on page 208). The output from the previous

code after this change is as follows:

Fri Nov 23 04:30:00 MST 2007

As you learned in this chapter, creating an internal DSL in Groovy is

fairly easy. The dynamic nature and optional typing allows you to create

a fluent interface. Closures help you create context. Groovy’s categories

and ExpandoMetaClass are helpful to inject, intercept, and synthesize

method calls and properties. Finally, Groovy’s ability to load and exe-

cute arbitrary scripts comes in handy to execute the DSLs.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=290

Appendix A

Web Resources
Groovy Home. .http://groovy.codehaus.org

Home of the Groovy project for documentation and downloads.

Groovy Download Pagehttp://groovy.codehaus.org/Download

Direct link to the Groovy download page for latest released version and previous

versions.

Groovy Daily Build . http://build.canoo.com/groovy

Place to download current builds of Groovy project, if you like to stay on the

bleeding edge.

Groovy API Javadoc . http://groovy.codehaus.org/api

Javadoc for the Groovy API.

The GDK . http://groovy.codehaus.org/groovy-jdk

List of the methods that are part of the Groovy JDK—Groovy extensions to the

JDK.

Markmail for Groovy Mailing List http://groovy.markmail.org

Convenient place to search for any topics discussed in the Groovy users mailing

list.

Groovy Mailing Lists http://groovy.codehaus.org/Mailing+Lists

List and details of Groovy mailing lists.

A Bit of Groovy History http://glaforge.free.fr/weblog/index.php?itemid=99

A blog by Guillaume Laforge on Groovy history.

MetaClass and Method Interception. . .
. . . http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.

html

A blog by Graeme Rocher on Groovy’s metaprogramming capabilities and open

classes.

http://groovy.codehaus.org
http://groovy.codehaus.org/Download
http://build.canoo.com/groovy
http://groovy.codehaus.org/api
http://groovy.codehaus.org/groovy-jdk
http://groovy.markmail.org
http://groovy.codehaus.org/Mailing+Lists
http://glaforge.free.fr/weblog/index.php?itemid=99
http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html
http://graemerocher.blogspot.com/2007/06/dynamic-groovy-groovys-equivalent-to.html

APPENDIX A. WEB RESOURCES 292

Gant Home . http://gant.codehaus.org

A site for Gant, which is like Ant but uses Groovy instead of XML.

Groovy Scriptom API.http://groovy.codehaus.org/COM+Scripting

Groovy API that allows you to interact with Windows ActiveX and COM.

Groovy Closures Definition. . .
. . . http://groovy.codehaus.org/Closures+-+Formal+Definition

Discussions and definition of Groovy closures.

Some Differences Between Java and Groovy. . .
. . . http://groovy.codehaus.org/Differences+from+Java

List and details of some differences between Java and Groovy.

Eclipse Plug-in for Groovyhttp://groovy.codehaus.org/Eclipse+Plugin

Plug-in for Groovy development on the Eclipse IDE.

IntelliJ IDEA . http://www.jetbrains.com/idea

Popular Java IDE with exceptional Groovy support.

TextMate. .http://macromates.com

TextMate, a popular editor on the Mac.

TextMate Groovy Bundle. . .
. . . http://docs.codehaus.org/display/GROOVY/TextMate

Groovy bundle for TextMate, a popular editor on the Mac.

Tweaking the Groovy Bundle for TextMate Editor. . .
. . . http://tinyurl.com/ywotsj

Venkat’s blog on a tweak to Groovy bundle for the easy/quick display of output.

Using Notepad2 .http://tinyurl.com/yqfucf

A blog entry showing how to use Notepad2 to edit and run Groovy on Windows.

E Text Editor . http://www.e-texteditor.com

TextMate-like editor for Windows.

FactoryBuilderSupporthttp://groovy.codehaus.org/FactoryBuilderSupport

Groovy’s FactoryBuilderSupport class, which is the new base class for SwingBuilder.

API for FactoryBuilderSupport. . .
. . . http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html

API for the FactoryBuilderSupport class, which is the new base class for Swing-

Builder.

Groovy String Support. . .
. . . http://groovy.codehaus.org/groovy-jdk/java/lang/String.html

Extensions and support for Strings in Groovy.

Groovy Looping . http://groovy.codehaus.org/Looping

Shows different ways to loop in Groovy.

http://gant.codehaus.org
http://groovy.codehaus.org/COM+Scripting
http://groovy.codehaus.org/Closures+-+Formal+Definition
http://groovy.codehaus.org/Differences+from+Java
http://groovy.codehaus.org/Eclipse+Plugin
http://www.jetbrains.com/idea
http://macromates.com
http://docs.codehaus.org/display/GROOVY/TextMate
http://tinyurl.com/ywotsj
http://tinyurl.com/yqfucf
http://www.e-texteditor.com
http://groovy.codehaus.org/FactoryBuilderSupport
http://groovy.codehaus.org/api/groovy/util/FactoryBuilderSupport.html
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://groovy.codehaus.org/Looping
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=292

APPENDIX A. WEB RESOURCES 293

Groovy Collections Support. . .
. . . http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html

Extensions and features Groovy has added to collections.

Groovy’s Support for Map. . .
. . . http://groovy.codehaus.org/groovy-jdk/java/util/Map.html

Extensions and features Groovy has added to Java’s Map.

SwingX UI . http://swingx.dev.java.net

SwingX UI Library—SwingLabs extensions to Swing.

SwingXBuilder . http://groovy.codehaus.org/SwingXBuilder

Details about the SwingXBuilder—Groovy’s support for building SwingX UI appli-

cations.

JIDE . https://jide-oss.dev.java.net

JIDE Swing component library.

Builder for JIDE . http://groovy.codehaus.org/JideBuilder

JideBuilder for using JIDE in Groovy.

GraphicsBuilder . http://groovy.codehaus.org/GraphicsBuilder

GraphicsBuilder for building JavaFX-type Java2D graphics.

Groovy’s Support for java.math Classes. . .
. . . http://groovy.codehaus.org/Groovy+Math

Groovy support of java.math classes to provide better accuracy.

State of IDE Support for Groovy http://groovy.codehaus.org/IDE+Support

Different IDEs that support Groovy development and their current state.

Groovy Operator Overloading. . .
. . . http://groovy.codehaus.org/Operator+Overloading

Groovy operator overloads and their method mapping.

Runtime vs. Compile Time/Static vs. Dynamic. . .
. . . http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic

Discussions and rationale for Groovy’s support of dynamic typing.

Using JUnit 4 with Groovy. . .
. . . http://groovy.codehaus.org/Using+JUnit+4+with+Groovy

Steps to use JUnit 4.0 with Groovy.

JRuby Home . http://jruby.codehaus.org

Home of the JRuby project for documentation and downloads.

Grails Home . http://grails.org/

Home of the Grails project for documentation and downloads.

Getting Started with Grailshttp://www.infoq.com/minibooks/grails

Jason Rudolph’s book on working with Grails.

http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://groovy.codehaus.org/groovy-jdk/java/util/Map.html
http://swingx.dev.java.net
http://groovy.codehaus.org/SwingXBuilder
https://jide-oss.dev.java.net
http://groovy.codehaus.org/JideBuilder
http://groovy.codehaus.org/GraphicsBuilder
http://groovy.codehaus.org/Groovy+Math
http://groovy.codehaus.org/IDE+Support
http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/Runtime+vs+Compile+time,+Static+vs+Dynamic
http://groovy.codehaus.org/Using+JUnit+4+with+Groovy
http://jruby.codehaus.org
http://grails.org/
http://www.infoq.com/minibooks/grails
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=293

APPENDIX A. WEB RESOURCES 294

Sun/Java Scripting Project Home https://scripting.dev.java.net

Details about scripting languages and JSR 223: Scripting for the Java Platform.

Java Download http://java.sun.com/javase/downloads/index.jsp

Download page for Java and JDK.

Why Getter and Setter Methods Are Evil. . .
. . . http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html

An article by Allen Holub.

Why Copying an Object Is a Terrible Thing to Do. . .
. . . http://www.agiledeveloper.com/articles/cloning072002.htm

An article that addresses issues with object copying in Java.

Xerces XML Parser . http://xerces.apache.org/xerces-j

Popular Java-based XML parser.

Higher-Order Function http://c2.com/cgi/wiki?HigherOrderFunction

Discussions on higher-order functions.

Duck Typing . http://c2.com/cgi/wiki?DuckTyping

What’s duck typing?

Why Scripting Languages Matter. . . .http://www.oreillynet.com/pub/wlg/3190

Tim O’Reilly discussing the nature of applications and the role played by script-

ing languages.

Technical Debt http://martinfowler.com/bliki/TechnicalDebt.html

Martin Fowler discussing the term technical debt.

Mocks Aren’t Stubs http://martinfowler.com/articles/mocksArentStubs.html

Martin Fowler discussing the similarities and difference between mocks and

stubs.

Good, Bad, and Ugly of Java Generics. . .
. . . http://www.agiledeveloper.com/articles/GenericsInJavaPartI.pdf

An article discussing the good, bad, and the ugliness of Java Generics.

Languages and Idioms . http://tinyurl.com/2kpsm4

A blog entry discussing languages and idioms.

Experience with GSQL .http://tinyurl.com/327dmm

A blog entry about experiences using GSQL.

Crash of the Mars Orbiter. . .
. . . http://www.cnn.com/TECH/space/9909/30/mars.metric.02

CNN coverage of the crash of the Mars Orbiter.

Clip from Raiders of the Lost Ark. . .
. . . http://www.youtube.com/watch?v=m5TcfywPj0E

Sword fight scene from the movie Raiders of the Lost Ark.

https://scripting.dev.java.net
http://java.sun.com/javase/downloads/index.jsp
http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-toolbox.html
http://www.agiledeveloper.com/articles/cloning072002.htm
http://xerces.apache.org/xerces-j
http://c2.com/cgi/wiki?HigherOrderFunction
http://c2.com/cgi/wiki?DuckTyping
http://www.oreillynet.com/pub/wlg/3190
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/articles/mocksArentStubs.html
http://www.agiledeveloper.com/articles/GenericsInJavaPartI.pdf
http://tinyurl.com/2kpsm4
http://tinyurl.com/327dmm
http://www.cnn.com/TECH/space/9909/30/mars.metric.02
http://www.youtube.com/watch?v=m5TcfywPj0E
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=294

APPENDIX A. WEB RESOURCES 295

Pragmatic Programmer . http://pragprog.com

Web site of the publisher of this book.

No Fluff Just Stuff .. http:www.nofluffjuststuff.com

A popular traveling Java conference.

http://pragprog.com
http:www.nofluffjuststuff.com
http://books.pragprog.com/titles/vslg/errata/add?pdf_page=295

Appendix B

Bibliography

[Bec96] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall,

Englewood Cliffs, NJ, 1996.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++

Reference Manual. Addison-Wesley Longman, Boston, MA,

1990.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly

& Associates, Inc, Sebastopol, CA, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Gra07] James Edward Gray, II. TextMate: Power Editing for the Mac.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2007.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit Testing In

Java with JUnit. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2003.

[Knu97] Donald Ervin Knuth. The Art of Computer Programming: Fun-

damental Algorithms, volume 1. Addison Wesley Longman,

Reading, MA, third edition, 1997.

APPENDIX B. BIBLIOGRAPHY 297

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-

Oriented Programming. Manning Publications Co., 2003.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction.

Prentice Hall, Englewood Cliffs, NJ, second edition, 1997.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building

Domain-Specific Languages. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2007.

[Rai04] J. B. Rainsberger. JUnit Recipes : Practical Methods for Pro-

grammer Testing. Manning Publications Co., Greenwich, CT,

2004.

[Roc06] Graeme Rocher. The Definitive Guide to Grails. Apress,

Berkeley, CA, 2006.

[Rud07] Jason Rudolph. Getting Started with Grails. InfoQ, 2007.

[Seb04] Robert W. Sebesta. Concepts of Programming Languages.

Addison-Wesley, Reading, MA, 2004.

[SH07] Justin Gehtland Stuart Halloway. Rails for Java Developers.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2007.

[Tat06] Bruce Tate. From Java to Ruby: Things Every Manager

Should Know. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2006.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

http://books.pragprog.com/titles/vslg/errata/add?pdf_page=297

Index
Symbols
+ operator, 118, 148

++ operator, 57, 148

-= operator, 120

. operator, 45

// expression, 113

<< operator, 57, 211

= operator, 211

==~ operator, 122

=~ operator, 122

: symbol, 281

== operator, 69–70

"" expression, 113

{->} syntax, 107

~ operator, 121

A
Advice, 194, 197

Annotations, 64

ArrayList, 133

Arrays

creating, 74

extensions, 148

iterating over, 126–128

lists and, 124–126

Aspect-oriented programming (AOP),

194

see also Meta-Object Protocol (MOP)

Assert methods, 238

Autoboxing, 59

Automated tests, see Testing; Unit

testing

B
Backslashes, 121

Boolean evaluation, 56f, 55–56, 191

Builders

FactoryBuilderSupport and, 272–276

custom, with metaprogramming,

265–268

support for, 268–270

Swing applications and, 265f,

264–265

use of, 260

for XML, 260–263

BuilderSupport, 268–270

C
Categories

built-in, 206

DSLs and, 286–288

method injection and, 203–208

mocking and, 248–249

Classes

categories and, 156

creating with Expando, 224–227

defined, 172

Groovy, 174

Groovy, using from Java, 175

inner, 72

integration and, 182

in Java and Groovy, 172, 173f

Java, using from Groovy, 176

open, 202

overriding, 244

running Groovy and, 173

Closures

approach to, 110

benefits of, 110

coroutines and, 101–102, 103f

curried, 104f, 102–104

delegation, 108f, 107–109

DSLs and, 282–283

dynamic, 105–107

Groovy way, 94–95

importance of, 92

without parameters, 107, 117

CODE BLOCKS 299 FOWLER

resource cleanup and, 99–101

sending multiple parameters to, 98

storing in variables, 209

traditional, 93–94

using, 96–97, 110

Code blocks, 72

Code synthesis vs. code generation, 17

Collaborator, 243, 253

collect (), 128, 136

Collections

ArrayList, 124–126

convenience methods and, 130–133

finder methods and, 129–130

iterating over, 126–128

iterating over Map, 135–137

Map, 133–135

Map convenience methods, 137–139

Colons, 52

Command line, running Groovy from,

35f, 34–35

Context, and DSLs, 277–279, 282

Coroutines and closures, 101–102,

103f

Coupling, 242

Curried closures, 104f, 102–104

Curry, Haskell B., 104

Customized builders, 265–268

D
Databases, 164

connecting to, 165

dataSet, 168

inserting and updating, 169

iterating through data in, 166–168

MS Excel and, 170f, 170–171

XML, transforming data from, 167

dataSet, 168

def keyword, 72

delegate, 107–109

Delegation vs. inheritance, 224,

227–231

DOMCategory, 156–158

Domain-specific languages (DSLs)

categories and, 286–288

closures and, 282–283

context and, 277–279

designing, 283

ExpandoMetaClass and, 289–290

fluency and, 279–280

internal vs. external, 280–281

internal, design of, 281

internal, Groovy support for,

281–282

method interception and, 283–285

overview of, 277

parentheses and, 285–286

dump, 142

Dynamic closures, 105–107

Dynamic languages, 16–19, 281

Dynamic typing, 158

benefits of, 78–79

capabilities, 82

classification of, 80f, 79–80

design by capability and, 80–85

errors and discipline in, 84

methods and, 88–91

optional typing and, 86

specifying type or not, 91

vs. typing in Java, 75–78

unit testing and, 84

Dynamically typed languages, 18, 66,

79

E
each (), 126–128, 130, 135–136

EasyMock, 244

Eclipse, 36

enum, 61–63

Event handlers, 264

Exception tests, 238, 241

Exceptional handling, 43–44

Execute Around Method pattern, 99,

100

Expando, 224–227, 251–253

ExpandoMetaClass, 208–212

ExpandoMetaClass, 219–222, 249–250

DSLs and, 289–290

Expressions, 111–114

External DSL, 280

External iterators, 127

F
FactoryBuilderSupport, 272–276

FAIR testing principles, 237

find (), 129–130, 137

Finder methods, 129–130

Fluency, and DSLs, 279–280, 282

for-each, 60

Forward slashes, 123

Fowler, Martin, 243

GDK 300 JAVA

G
GDK, 40–42, 141, 142f

object extensions, 142–147

other extensions, 147–153

Generics, 65–67

Gottlob Frege, Friedrich Ludwig, 104

GPath, described, 157

Groovy

== operator, 69–70

arrays, creating, 74

benefits of, 21

Boolean evaluation, 56f, 55–56

classes, 22

code blocks in, 72

command line, 35f, 34–35

community forums for, 18

compiler, 71, 72

defined, 19–20

downloading, 30

dynamic languages and, 16–19

Exception handling, 43–44

GDK, 40–42, 142f

groovyConsole, 33–34

Hello Groovy example, 37

history, 14

IDE support and, 36f, 35–36

inner classes and, 72

installation of, 31–32

interfaces, implementing, 51–55

Java 5 features and, 59–67

enum, 61–63

for-each, 60

varargs, 63–64

annotations, 64

autoboxing, 59

generics, 65–67

static import, 65

Java code and, 37

Java integration and, 14, 16

JavaBeans and, 45–50

JDK and API in, 23

keywords in, 72

latest release of, 30

light features of, 44–45

looping, 39–40

math in, 87n

mock library, 254–259

operator overloading, 57–58

optional parameters, 50–51

reasons for using, 21–23

return, 68–69

running, 173

Safe navigation operator, 42–43

semicolons, optional vs. mandatory,

73

test drive, 33f, 32–33

type checking, 70–72

types in, 86–87

using Java classes, 176

Groovy interceptors, 185

Groovy SQL (GSQL), 164, 170f

groovyConsole, 33–34

GroovyInterceptable, 195–197, 217

GroovyObject, 185

groovysh, 32–33

groupBy (), 139

GString, 114

lazy evaluation and, 115–118

H
Handlers, adding, 53

Heredocs, 118

I
identity, 143

IDEs and Groovy, 36f, 35–36

Idioms, 264

Immutability, 112, 116

in keyword, 72

inject (), 131

Injection, see Method injection

Inner classes, 72

Installing Groovy, 31–32

Integration, classes and scripts, 182

IntelliJ IDEA, 35

Interfaces

Factory, 274

implementing, 51–55

reliance on, in Java, 80

Internal DSLs, 281, 282

Internal iterator, 126, 127

Iterations, 126–128, 135–137

internal vs. external, 127

J
Java

automatic garbage collection, 98

Boolean expressions in, 55

classes in Groovy, 22

code in Groovy, 37

collections in, 124

JAVA 5 LANGUAGE FEATURES 301 METHODS

coroutines in, 102

dynamic languages and, 16–19, 79

exception handling, 43

Groovy GDK and, 40–42

Groovy integration and, 14, 16

interfaces and, 80

interfaces, implementing, 51

java.io extensions, 151

java.lang extensions, 148

java.util extensions, 153

JDK and API in Groovy, 23

scripts, using Groovy, 180–182

static vs. dynamic typing, 75

strings in, 111, 112

typing in, 75–78

using Groovy classes, 175

Java 5 language features, 59–67

annotations, 64

autoboxing, 59

enum, 61–63

for-each, 60

generics, 65–67

static import, 65

varargs, 63–64

JavaBeans, 45–50

JDK, 142f

JMock, 244

Job security, 65

join (), 132

Joint compilation, 175, 176

JSR 223, 180, 182

JUnit, 236–240

K
Key-value pairs, 133

Keywords, 72

L
Laforge, Guillaume, 20

Languages, classification of, 80f, 79–80

Lazy evaluation, 113, 115–118

Lists

arrays, 124–126

iterating over, 126–128

Literals, 111–114

Looping, 39–40, 72, 279

M
Map, 133–135

convenience methods for, 137–139

iterating over, 135–137

unit testing and, 253–254

McWhirter, Bob, 20

Meta-Object Protocol (MOP)

benefits of, 184

classes, creating, 224–227

GroovyInterceptable, 195–197

injecting into specific instances,

212–213

injection using categories, 203–208

injection using ExpandoMetaClass,

208–212

MetaClass, 197–201

method delegation, 227–231

objects and, 185–190

objects, accessing dynamically,

192–193

queries, 190–191

synthesis for specific instances,

222–223

synthesis using ExpandoMetaClass,

219–222

synthesis using methodMissing (),

214–218

techniques, 231–232

MetaClass, 197–201

Method delegation, 227–231

Method handling, 186, 187f

Method injection, 202

categories, using, 203–208

ExpandoMetaClass, 208–212

options for, 232

parameters and, 205

into specific instances, 212–213

vs. synthesis, 203

Method interception, 194, 197, 231,

283–285

Method resolution, 107, 108f

Method synthesis

defined, 214

ExpandoMetaClass, 219–222

vs. injection, 203

methodMissing (), 214–218

options for, 232

for specific instances, 222–223

methodMissing (), 214–218

Methods

assert, 238

for BuilderSupport, 269

collections and, 130–133

creating, 225

MICROSOFT EXCEL 302 STRACHEY

executing around, 99

finder, 129–130

GDK and, 153

GroovyInterceptable and, 195–197

invoking indirectly, 147

for Map, 137–139

MetaClass and, 197–201

overriding, 245

querying, 190–191

strings and, 120–121

Microsoft Excel, accessing, 170f,

170–171

MockFor, 256–259

Mocking, 242f, 242–243

with categories, 248–249

with Expando, 251–253

with ExpandoMetaClass, 249–250

in Groovy, 244

with Groovy Mock Library, 254–259

with Map, 253–254

by overriding, 244–248

statically typed languages and, 244

vs. stubs, 243

“Mocks Aren’t Stubs” (Fowler), 243

Multiline strings, 118–120

Multimethods, 88–91

N
Namespaces, 159

Negative tests, 238, 240

Nodes, 272, 274

O
Objects

accessing dynamically, 192–193

extensions, 142–147

GroovyInterceptable and, 195

method calls and, 88–91

MOP and, 185–190

querying, 190–191

types, in Groovy application, 185

Operator overloading, 57–58

Optional parameters, 50–51

Optional typing, 86

P
Parameters

closures and, 98

closures, lack of, 107, 117

curried, 104

dynamics closures and, 106

ellipsis and, 63

injected methods and, 205

optional, 50–51

Parentheses, in Groovy, 279, 281,

285–286

Parsing XMl, 155

Pipe operator, 148

POGOs, 185, 186, 187f, 187, 208

POJOs, 185, 186f, 199, 208

Polymorphism, 79

Positive tests, 238, 239

Primitives, 87

Properties

accessing, 48, 146

for BuilderSupport, 270

creating, 286

declaring, 47

invoking, 192

querying, 190–191

Q
Querying, methods and properties,

190–191

R
Rayner, Jeremy, 20

Regular expressions, strings and,

121–123

Resource cleanup, closures and,

99–101

return, 68–69

RobotBuilder example, 272

S
Safe navigation operator, 42–43

SAX, 268

Schönfinkel, Moses, 104

Scripts

defined, 172

Groovy, 178–179

Groovy, using from Java, 180–182

Semicolons, 33, 44, 73

shouldFail (), 241

Simple API for XML (SAX), 268

sleep (), 144

Static import, 65

Static typing, 81

Strachan, James, 20

Strachey, Christopher, 104

STRINGS 303 XMLSLURPER

Strings

convenience methods for, 120–121

GString lazy evaluation, 115–118

in Java, 111, 112

literals and expressions, 111–114

multiline, 118–120

regular expressions and, 121–123

StubFor, 255

Stubs vs. mocks, 243

Swing, builders and, 265f, 264–265

T
Testing

dynamic typing and, 84, 234

type checking and, 76

see also Unit testing

TextMate, 36f, 36

To-do list builder, 266

Type checking, 70–72, 75

Types for Boolean, 56f

Typing, in Groovy, 86–87

Typing, in Java, 75–78

U
Unit testing, 84

automation of, 234–235

benefits of, 235

coupling and, 242

dynamically typed languages and,

234

for exceptions, 241

FAIR principles of, 237

with JUnit, 236–240

mocking and, 242f, 242–243

mocking by overriding, 244–248

mocking with ExpandoMetaClass,

249–250

mocking with Expando, 251–253

mocking with Map, 253–254

mocking with categories, 248–249

mocking with Groovy Mock Library,

254–259

types of, 238

Unix-like systems, Groovy installation,

31

V
varargs, 63–64

W
Websites

for downloading Groovy, 30

for Eclipse plug-in, 35

for GDK enhancements, 141n

for Groovy’s mailing list, 18n

for Groovy-Java differences, 67n

for IntelliJ IDEA JetGroovy plug-in,

35

Windows, Groovy installation, 31

X
XML, 155

builders and, 260–263

creating, 160–163

DOMCategory, 156–158

namespaces and, 159

parsing, 155

SAX and, 268

transforming data from, 167

XMLParser, 158–159

XMLSlurper, 159–160

XMLParser, 158–159

XMLSlurper, 159–160

	Contents
	Foreword
	Introduction
	Why Dynamic Languages?
	What's Groovy?
	Why Groovy?
	What's in This Book?
	Who Is This Book For?
	Acknowledgments

	Beginning Groovy
	Getting Started
	Getting Groovy
	Installing Groovy
	Test-Drive Using groovysh
	Using groovyConsole
	Running Groovy on the Command Line
	Using an IDE

	Groovy for the Java Eyes
	From Java to Groovy
	JavaBeans
	Optional Parameters
	Implementing Interfaces
	Groovy boolean Evaluation
	Operator Overloading
	Support of Java 5 Language Features
	Gotchas

	Dynamic Typing
	Typing in Java
	Dynamic Typing
	Dynamic Typing != Weak Typing
	Design by Capability
	Optional Typing
	Types in Groovy
	Multimethods
	Dynamic: To Be or Not to Be?

	Using Closures
	Closures
	Use of Closures
	Working with Closures
	Closure and Resource Cleanup
	Closures and Coroutines
	Curried Closure
	Dynamic Closures
	Closure Delegation
	Using Closures

	Working with Strings
	Literals and Expressions
	GString Lazy Evaluation Problem
	Multiline String
	String Convenience Methods
	Regular Expressions

	Working with Collections
	Using List
	Iterating Over an ArrayList
	Finder Methods
	Collections' Convenience Methods
	Using Map
	Iterating Over Map
	Map Convenience Methods

	Using Groovy
	Exploring the GDK
	Object Extensions
	Other Extensions

	Working with XML
	Parsing XML
	Creating XML

	Working with Databases
	Connecting to a Database
	Database Select
	Transforming Data to XML
	Using DataSet
	Inserting and Updating
	Accessing Microsoft Excel

	Working with Scripts and Classes
	The Melting Pot of Java and Groovy
	Running Groovy
	Using Groovy Classes from Groovy
	Using Groovy Classes from Java
	Using Java Classes from Groovy
	Using Groovy Scripts from Groovy
	Using Groovy Scripts from Java
	Ease of Integration

	MOPping Groovy
	Exploring Meta-Object Protocol (MOP)
	Groovy Object
	Querying Methods and Properties
	Dynamically Accessing Objects

	Intercepting Methods Using MOP
	Intercepting Methods Using GroovyInterceptable
	Intercepting Methods Using MetaClass

	MOP Method Injection and Synthesis
	Injecting Methods Using Categories
	Injecting Methods Using ExpandoMetaClass
	Injecting Methods into Specific Instances
	Method Synthesis Using methodMissing
	Method Synthesis Using ExpandoMetaClass
	Synthesizing Methods for Specific Instances

	MOPping Up
	Creating Dynamic Classes with Expando
	Method Delegation: Putting It All Together
	Review of MOP Techniques

	Unit Testing and Mocking
	Code in This Book and Automated Unit Tests
	Unit Testing Java and Groovy Code
	Testing for Exceptions
	Mocking
	Mocking by Overriding
	Mocking Using Categories
	Mocking Using ExpandoMetaClass
	Mocking Using Expando
	Mocking Using Map
	Mocking Using the Groovy Mock Library

	Groovy Builders
	Building XML
	Building Swing
	Custom Builder Using Metaprogramming
	Using BuilderSupport
	Using FactoryBuilderSupport

	Creating DSLs in Groovy
	Context
	Fluency
	Types of DSLs
	Designing Internal DSLs
	Groovy and DSLs
	Closures and DSLs
	Method Interception and DSLs
	The Parentheses Limitation and a Workaround
	Categories and DSLs
	ExpandoMetaClass and DSLs

	Web Resources
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

